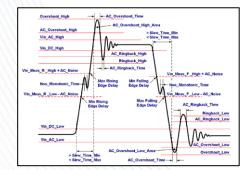
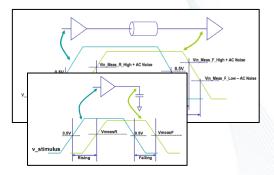
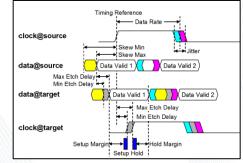
Addressing DDR5 design challenges with IBIS-AMI modeling techniques

Todd Westerhoff, SiSoft Doug Burns, SiSoft Eric Brock, SiSoft

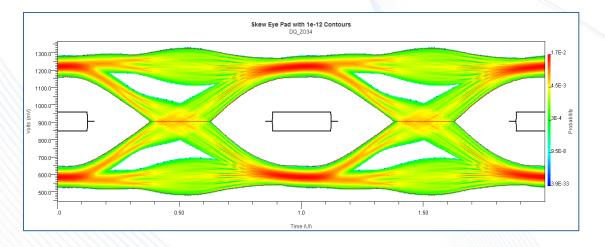
EDI CON 2017 IBIS Summit Boston, Massachusetts September 13, 2017


We Are Signal Integrity


Agenda


- Traditional DDR analysis
- Eyes and probabilities
- IBIS-AMI models
- DDR5 topologies and transactions
- Optimizing terminations
- Pulse response analysis
- Applying equalization
- Summary

Traditional DDR Analysis



Signal Integrity + Flight Time Extraction + Timing Analysis

- Combined signal integrity + timing analysis • → voltage and timing margins
- SI analysis < 100 data bits
- Margins computed based on worst case data

Eyes and Probabilities

- SerDes analysis techniques used to predict eye characteristics > 1M bits
- Eye margins measured against reference mask
 - Timing / skew adjustments are assumed

IBIS-AMI Models

<u>Goals</u>

- Interoperable: different vendor models work together
- **Portable:** one model runs in multiple simulators
- Flexible: supports Statistical and Time-Domain simulation
- **High Performance:** simulates a million bits per CPU minute
- Accurate: high correlation to simulations / measurement

Assumptions

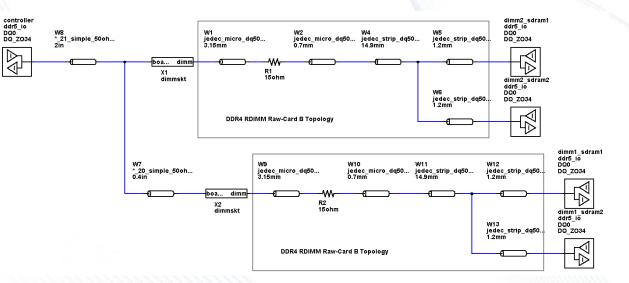
- "High impedance node"
 between analog I/O &
 equalization circuitry
- Analog I/O operates in linear region
- EQ behavior modeled by code linked into simulator
- EQ models meet AMI API

Serial Channels vs. DDR Topologies

Serial Channels

- Differential
- Long and lossy
- Unidirectional
- Continuous operation
- Simple impedance control
- Point to point topology

DDR Topologies


- Single-ended & differential
- Short and reflective
- Bidirectional
- Communicate in bursts
- Complex impedance control
- Multiple sources / loads with long branches

6

EDICON IBIS Summit

DDR5 Topologies and Transactions

- 1. (Write) Controller to DIMM1
- 2. (Write) Controller to DIMM2
- 3. (Read) DIMM1 to Controller
- 4. (Read) DIMM2 to Controller

Addressing DDR5 with IBIS-AMI

EDICON IBIS Summit

Sep 2017

Optimizing Terminations

Driver settings:

•	DQ_ZO34	Generic	DDR5	34	Ohm	Driver
•	DQ_ZO40	Generic	DDR5	40	Ohm	Driver
•	DQ ZO48	Generic	DDR5	48	Ohm	Driver

<u>Receiver / terminator settings:</u>

•	DQ_IN_ODTOFF	Generic	DDR5	Receiver	with	No	ODT		
•	DQ_IN_ODT34	Generic	DDR5	Receiver	with	34	ohm	ODT	
•	DQ_IN_ODT40	Generic	DDR5	Receiver	with	40	ohm	ODT	
•	DQ_IN_ODT48	Generic	DDR5	Receiver	with	48	ohm	ODT	
•	DQ_IN_ODT60	Generic	DDR5	Receiver	with	60	ohm	ODT	
•	DQ_IN_ODT80	Generic	DDR5	Receiver	with	80	ohm	ODT	
•	DQ IN ODT120	Generic	DDR5	Receiver	with	120) ohr	n ODT	
•	DQ IN ODT240	Generic	DDR5	Receiver	with	240) ohr	n ODT	

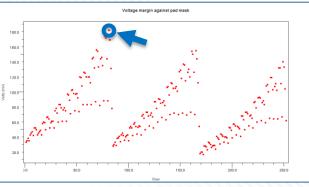
Each transaction:

(Driver) * (Receiver) * (Terminator) **3

= 3 * 8 * 8**3

- = 12,288 combinations per transaction
- * 4 transactions

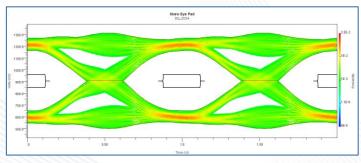
= <u>49,152</u> total termination settings (!)


SiSoff

We Are Signal Integrity

Finding The Best Case

			Variation														
Variable:	Type:	Format:	Group:	Value 1:		Value 2:		Value 3:	_	Value 4:	_	Value 5:	_	Value 6:	_	Value 7:	
\$controller:t1:model	IBIS Model	List	<none></none>	DQ_Z034	•	DQ_Z040	Ŧ	DQ_Z048	-		-		-		-		-
\$dimm1_sdram1:t1:model	IBIS Model	List	<none></none>	DQ_IN_ODT34	•	DQ_IN_ODT40	Ŧ	DQ_IN_ODT48	-	DQ_IN_ODT60	-	DQ_IN_ODT80	-	DQ_IN_ODT120	•	DQ_IN_ODT240	-
\$dimm1_sdram2:t1:model	IBIS Model	List	<none></none>	DQ_IN_ODT120	Ŧ	DQ_IN_ODT240	Ŧ	DQ_IN_ODTOFF	Ŧ		-		-		-		-
\$dimm2_sdram1:t1:model	IBIS Model	List	dimm2	DQ_IN_ODT60	¥	DQ_IN_ODT80	Ŧ	DQ_IN_ODT120	-	DQ_IN_ODT240	•		-		Ŧ		-
\$dimm2_sdram2:t1:model	IBIS Model	List	dimm2	DQ_IN_ODT60	Ŧ	DQ_IN_ODT80	Ŧ	DQ_IN_ODT120	-	DQ_IN_ODT240	-		-		•		-
\$UI	UI	List	<none></none>	0.313ns - ddr5_dq_3200	Ŧ		Ŧ		-		-		•		-		-


252 cases tested (out of a possible 12,288)

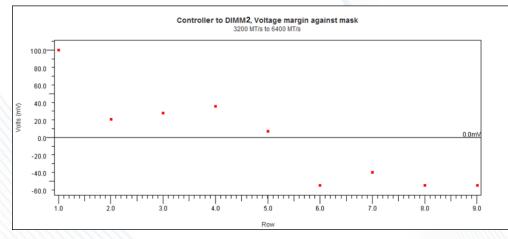
Voltage margin distribution

\$CONTROLLER:T1:MODEL	DQ_Z034
\$DIMM1_SDRAM1:T1:MODEL	DQ_IN_ODT240
\$DIMM1_SDRAM2:T1:MODEL	DQ_IN_ODTOFF
\$DIMM2_SDRAM1:T1:MODEL	DQ_IN_ODT60
\$DIMM2_SDRAM2:T1:MODEL	DQ_IN_ODT60

Best case conditions

Voltage and timing margin against mask

9

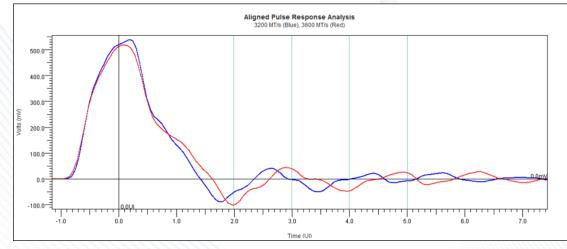

EDICON IBIS Summit

The Limiting Transaction

Transfer	Skew_Eye_Pad Inner (V)	Skew_Eye_Pad Inner (ps) 🖕
<u> </u>	<u> </u>	Y0
controller_to_dimm1_sdram1	0.179	69.736
dimm1_sdram1_to_controller	0.138	70.961
dimm2_sdram1_to_controller	0.102	57.485
controller_to_dimm2_sdram1	0.100	39.722

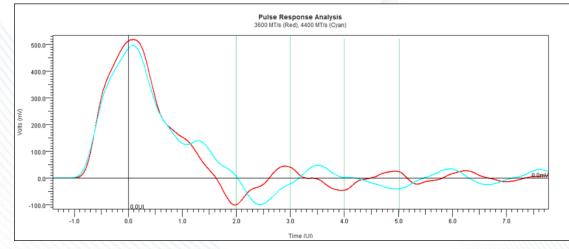
- Termination settings for each transaction were optimized
- Best voltage and timing margins determined for each transaction
- · We'll focus on the worst case transaction for this study

Limiting Transaction vs. Speed


- Data rate: 3200 to 6400MT/s, increments of 400 MT/s
- Voltage margin against mask is plotted
- Two questions
 - Why is 3600 MT/s so much worse than 3200 MT/s?
 - How can 4400 MT/s be better than 3600 MT/s?

Pulse Response Analysis

3200 MT/s (Blue) vs 3600 MT/s (Red)


- Vertical lines denote ISI at sampling times
- 3600 MT/s maximizes ISI at sample point

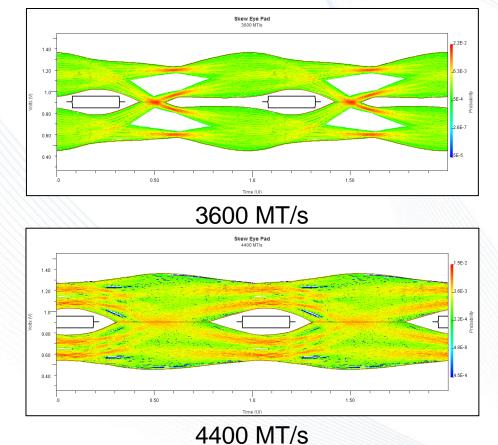
We Are Signal Integrity

Addressing DDR5 with IBIS-AMI

Pulse Response Analysis

4400 MT/s (Cyan) vs 3600 MT/s (Red)

- 4400 MT/s has less pulse height & width
- 4400 MT/s ISI is much better than 3600 MT/s


SiSofi™ We Are Signal Integrity

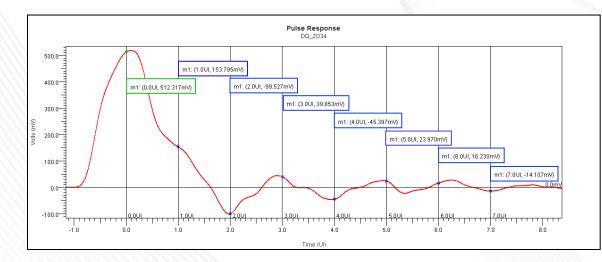
Addressing DDR5 with IBIS-AMI

EDICON IBIS Summit

Sep 2017

3600 MT/s vs. 4400 MT/s

Addressing DDR5 with IBIS-AMI

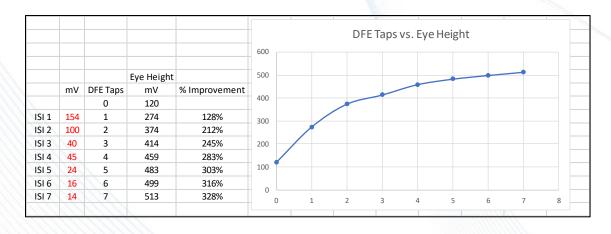

EDICON IBIS Summit

Sep 2017

14

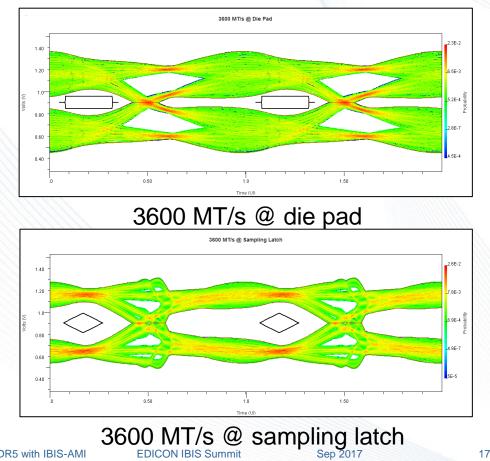
We Are Signal Integrity

Applying Equalization


- Problem here isn't loss, it's ringing
- TX FIR and RX CTLE filters deal with loss
- RX DFE is best suited to correct ringing
- RX ISI voltages can be read directly off the plot

Sep 2017

Eye Height vs. DFE Taps

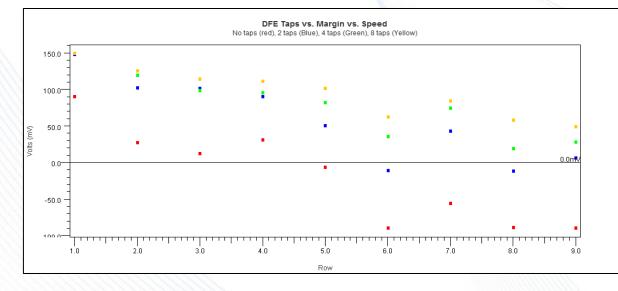

- We compute theoretical eye opening from the pulse response
- We also compute how DFE taps could improve eye height
 - Assumes tap range, granularity, training efficiency

We Are Signal Integrity

EDICON IBIS Summit

Sep 2017

Impact of 2 DFE Taps



Addressing DDR5 with IBIS-AMI

17

SiSofr We Are Signal Integrity

DFE Taps vs. Speed

- Data rate: 3200 to 6400MT/s, increments of 400 MT/s
- Voltage margin against mask is plotted
- DFE taps: 0 (Red), 2 (Blue), 4 (Green), 8 (Yellow)

Summary

- Modern DDR analysis uses techniques that predict behavior over millions of data bits
- Optimizing driver / receiver termination settings is essential to ensuring margin
- Pulse response analysis provides useful insight into how ringing affects DDR design margins
- AMI models can be used to predict how Tx/Rx EQ will improve design margins
- This presentation only covered <u>part</u> of the full methodology needed for DDR5 analysis

Todd Westerhoff twesterh@sisoft.com

Doug Burns dburns@sisoft.com

Eric Brock ebrock@sisoft.com

Addressing DDR5 with IBIS-AMI

EDICON IBIS Summit

Sep 2017

20

We Are Signal Integrity

% SiSoff