IBIS 4.1 Macromodel Library for Simulator Independent Modeling

Arpad Muranyi, Mike LaBonte, Todd Westerhoff Sam Chitwood, Ian Dodd, Barry Katz, Scott McMorrow, Bob Ross, Ken Willis

- History How did we get here?
- Macromodeling concepts
- A call to action
- The working group
- Current building block library
- Current issues
- Next steps

History – How Did We Get Here?

- IBIS isn't keeping up with the demands of new I/O technologies
 - SPICE use in SI analysis is increasing
- IBIS 4.1 allows AMS models to be called from IBIS, but adoption has been slow
- Macromodeling proposed at January 2005 summit by Donald Telian of Cadence as an alternative to full AMS implementations
 - Proposal was for Berkeley SPICE extensions

History – How Did We Get Here?

- Study group formed (Intel, Cisco, Teraspeed, SiSoft, Cadence) to explore macromodeling concept
- Macromodeling in AMS proposed as a bridge to full AMS models, without requiring IBIS specification changes that would be required for SPICE extensions
- Proof-of-concept models built and presented at DAC 2005 IBIS Summit

Mar 2005: First Attempts at Mixing Spice/AMS

The Macromodel Concept

- Create a library of AMS "elements" that can be instantiated and interconnected to create complex buffer models
- Model AMS elements after sources and elements found in popular SPICE tools
- Express the reference definitions of element behavior using an AMS language.
- Ensure elements can be implemented by substitution in SPICE engines without native AMS support
- Standardize AMS element library across all model providers
- IBIS files reference netlists constructed from reference "templates", which instantiate the AMS elements

Macromodel Hierarchy

Macromodel example

AMS Element Mapping

Cisco.com

Native AMS Simulator

IBIS_BUFFER_OUT ioB #(.ibis_file("mybuf.ibs"), .ibis_model("mybuff"))
 (InB, En, RcvB, IoB, PCrefB, PUrefB, PDrefB, GCrefB);

SPICE Simulator

b_io PUrefB PDrefB loB lnB En PCrefB GCrefB
+ file='mybuf.ibs' model='mybuf' +power=on buffer=2

Macromodels in Verilog-A simulators

Macromodels in VHDL-AMS simulators

Macromodels in SPICE/IBIS simulators

dilling Cisco.com

June 14, 2005: A Clear Strategy

AMS models that can be translated into SPICE implementations

A Call to Action

- IBIS/AMS macromodeling proposal presented at IBIS Summit, June 2005
- Letters sent out to major simulator vendors inviting them to participate in library definition
- Working group formed
 - Arpad still does most of the coding and testing ...

The Working Group

- Intel Arpad Muranyi
 - Cadence Design Systems Ken Willis
 - Cisco Systems Mike LaBonte, Todd Westerhoff
 - Mentor Graphics Ian Dodd
 - Sigrity Sam Chitwood
 - SiSoft Barry Katz
 - Teraspeed Scott McMorrow, Bob Ross

Current Library - Basic Elements

	Fixed	Voltage Controlled	Current Controlled
R	IBIS_R	IBIS_VCR	IBIS_CCR
L	IBIS_L	IBIS_VCL	IBIS_CCL
С	IBIS_C	IBIS_VCC	IBIS_CCC

Current Library - Sources

	Fixed	Voltage Controlled	Current Controlled	Voltage Controlled with Delay	Current Controlled with Delay
Voltage Source	IBIS_V	IBIS_VCVS	IBIS_CCVS	IBIS_VCVS_ DELAY	IBIS_CCVS_ DELAY
Current Source	IBIS_I	IBIS_VCCS	IBIS_CCCS	IBIS_VCVS_ DELAY	IBIS_CCCS_ DELAY

Current Library – Operators

	Current Controlled Current (with scaler)	Voltage Controlled Voltage (with scaler)
Adders	IBIS_CCCS_SUM	IBIS_VCVS_SUM
Multipliers	IBIS_CCCS_MULT	IBIS_VCVS_MULT
Dividers	IBIS_CCCS_DIV	IBIS_VCVS_DIV

Current Library – Operators (Cont.)

	Voltage Controlled Current (with scaler)	Current Controlled Voltage (with scaler)
Adders	IBIS_VCCS_SUM	IBIS_CCVS_SUM
Multipliers	IBIS_VCCS_MULT	IBIS_CCVS_MULT
Dividers	IBIS_VCCS_DIV	IBIS_CCVS_DIV

Current Library – Active Devices

	DK IN PROGRESS		
	Input / Output	Output Only	Input Only
Buffer	IBIS_BUFFER_IO	IBIS_BUFFER_OUT	IBIS_BUFFER_IN

	Open Drain	Open Source	Series
Buffer	IBIS_BUFFER_OD	IBIS_BUFFER_OS	IBIS_BUFFER_SERIES
	WORK	IN PROGKE	

Current Library – Other Models

Inductive Coupler	IBIS_K
Transmission Line	IBIS_T

Sample AMS Element Code

Cisco.com

Inductive Coupler

```
module IBIS K (p1, n1, p2, n2);
     output
                p1, n1, p2, n2;
     electrical p1, n1, p2, n2;
     branch
                (p1, n1) Out1;
     branch
                (p2, n2) Out2;
     parameter real Lval 1 = 1.0;
     parameter real Lval2 = 1.0;
     parameter real Kval = 0.0;
     parameter real IO 1
                            = 0.0;
     parameter real I0<sup>2</sup>
                            = 0.0:
     parameter real Scale = 1.0;
// This should be declared as "localparam" so that it
// couldn't be changed from the outside
//localparam real M = Kval * sqrt(Lval 1 * Lval 2);
     parameter real M = Kval * sqrt(Lval 1 * Lval 2);
  analog begin
       if (Scale * Lval 1 > 0.0) begin
         I(Out1) <+ (idt(V(Out1), IO 1*Scale*Lval 1) -
          M*(I(Out2)-I0 2)) / (Scale*Lval 1);
       end else begin
         V(Out1) <+ 0.0;
       end
       if (Scale * Lval 2 > 0.0) begin
          I(Out2) <+ (id\overline{t}(V(Out2), IO 2*Scale*Lval 2) -
          M*(I(Out1)-I0 1)) / (Scale*Lval 2);
       end else begin
         V(Out2) <+ 0.0;
       end
     end
endmodule
```

Simple Resistor

```
module IBIS_R (p, n);
electrical p, n;
branch (p, n) Out;
parameter real Rval = 1.0;
parameter real Scale = 1.0;
analog begin
    V(Out) <+ Scale * Rval * I(Out);
end
endmodule</pre>
```

Current Issues

- Verilog-A(MS) does not allow a string to be passed as a file name to the \$table_model keyword
 - Every instance of the building block would have to be duplicated with a hard coded file name, or
 - we could pass the data into the building block as parameters from the netlist when instantiating it
- Verilog-A(MS) provides NO file parsing capabilities to read data from external files
 - The data will have to be extracted from the IBIS file manually or by a separate script (VHDL-AMS doesn't have this limitation)
- Verilog-A(MS) has very limited array features
- VHDL-AMS and Verilog-A(MS) do not allow expressions to be passed as parameters like (H)SPICE

- Create more templates to find out what additional building blocks need to be written
- We need semiconductor vendor participation using the library to model current parts
- Translator implementation for EDA companies without native Verilog-A(MS) / VHDL-AMS support

Final Thoughts

- This approach should help speed the adoption of AMS as a modeling language for signal integrity purposes
- Full AMS models (as opposed to templates based on macromodels) will appear once all EDA vendors support AMS