Version 3.2 Experience Modeling Fast, Two-tap Pre-emphasis Buffer

Bob Ross IBIS Summit Meeting DesignCon East 2005 Worcester, Massachusetts September 19, 2005

@ 2002-2005 Teraspeed Consulting Group LLC

The Project Constraints

- Semiconductor vendor
 - Two-tap pre-emphasis buffer with On-Die Terminator (ODT)
 - "Cannot be done in IBIS"
 - Encrypted HSPICE under 3-way NDA
- Customer (required IBIS Version 3.2)
 - For specific IBIS tool (with no HSPICE access)
 - Tool supports [Driver Schedule]
 - Minimal customer IBIS knowledge
- Business issue (several final deliverables)
 - Two week delivery for four CML differential buffers within full 400+ pin ASIC model ... after legal contract closure delays
- Tips, experiences and unexpected issues here

Other Related Discussions

- Arpad Muranyi, March and January 2005, April 2004,
 - Either enhanced or reduced buffer switched in
 - Or main and one-bit delay boost
 - Six individual edges and state machine for *_AMS solution with C_comp
- Hazem Hegazy, LVDS Modeling, June, 2001
 - Either enhanced or reduced buffer switched in
- Michael Mirmak, C_comp Issues, October and April, 2004
 - Factored out C_comp from V-T tables, but more work needed
- Used Cookbook [Driver Schedule] pre-emphasis method
 - Main and one-bit delay boost
- Highlights of real issues, not the full process

Project Factors

- Process overview
 - Isolate, test SPICE model from limited documentation
 - Set up some SPICE extraction programs
 - Set up spread sheet calculation pages for processing all the buffer setups
 - Resolve unexpected situations
 - Test the prototype IBIS buffer in the EDA tool
 - Refine and deliver
- Customer goal was timely design exploration
 - No time for "perfect" solution or extensive research
 - Compromises needed

SPICE Configuration, Differential Control and [Driver Schedule]

CML Structure with IBIS Open_drain Models, Connected by [Diff Pin]

TERASPEED CONSULTING GROUP

- [Power Clamp] ODT predicts no offset from 1.8 V
 - Added top-level [Gnd Clamp] to compensate for offset
 - Some configurations go to 1.8 V
- TX+ and TX- different, but no reason to model this
 - SPICE code appeared symmetrical
 - Used TX+ extractions as reasonable approximation

SPICE TX+ and I-V Tables

- Aligned SPICE typ-min-max I-V sweeps to get ODT as a [Power Clamp] and MAIN and BOOST [Pulldown] tables by subtraction
 - ODT: High-state MAIN only for [Power Clamp]
 - ODT+MAIN: Low-state MAIN for [Pulldown]
 - ODT+BOOST: Low-state BOOST for [Pulldown]
- Removed (out of range) non-monotonic data
- Top-level [Gnd Clamp] mismatch adjustment for actual "I.8 V" high side levels, when needed

Time Extraction from TX+

- 50 Ω to 1.8 V, no pre-emphasis captures MAIN plus ODT reference waveform
- Set R_fixture=25 Ω for MAIN and BOOST Open_drain buffers
 - Used ibischk4 to determine low end-point of swing (high is Vdd)
 - Scaled the reference waveform
 - Keeps MAIN over about same voltage range
 - Correlates MAIN, BOOST delays
 - C_comp=0 pF (more later)

Reference waveform for TX+ rising edge

(Falling edge reference for TX+ not shown)

Unexpected Correlation Issues

IBIS leading edge truncation and slope difference skews

Ending levels near (non-symmetrical) SPICE levels

Tested with C_comp (later)

Unexpected IBIS shift without response degradation

Either a tool or tool setup issue, but could produce better (tool dependent) results

© 2002-2005 Teraspeed Consulting Group LLC

Page 11

Expected C_comp Degradation

- C_comp in IBIS [Driver Schedule]
 - IBIS should add C_comp as top-level load
 - Buffer impedance reduces driving mode degradation
 - (Bad??) IBIS choice
- Up to 3 pF, 25 Ω = 75 ps time constant or about 165 ps rise time degradation (less with pulldown impedance)
- Simulation rise time of less than 100 ps
- Total rise time approximately sqrt (t₁² + t₂²) or 193 ns (or less)

Further C_comp Investigation

- Compensate using C_fixture with R_fixture
 - Algorithm could use total specified loads (C-fixture, L_fixture, R_fixture, V_fixture, C_dut, L_dut, R_dut)
 - Or simplified with C_fixture (C_dut) added to C_comp no change in mathematics
 - Use same waveforms
- Add C_fixture to both MAIN and BOOST waveform tables (but keep C_comp=0.0 pF)
- Use only top-level C_comp
- Extra MAIN, BOOST capacitive currents drive top-level C_comp
- (Similar programmed approach, which still needed further tuning, Mirmak, 2004)

GROUP

Investigation with Another IBIS Tool

- C_comp=0.0 pF
 - Better delay correlation with SPICE
- C_comp=3.0 pF
 - C_fixture=3.0 pF
 - Left shifted edges and some distortion
 - Promising approach

GROUP

More C_comp Comments

- Why Top-Level C_comp
 - Simple, known receiving mode C_comp for I/O
 - Avoids inheritance of all Driver Schedule C_comps question
 - Is it always there or under certain scheduled conditions?
 - Avoids estimating C_comps for scheduled buffers
- Other C_comp issues
 - Voltage dependent, frequency dependent (or effective reactance)
 - Can be split among rails
 - Driving and receiving modes differences not supported
 - C_comp corners specified by magnitude rather than correlated with process, temperature, voltage
 - Plus differential C_comp issues
- So C_comp is an effective value, and refinement requires many IBIS additions

Conclusions

- Unresolved (further checking) issues
 - Reasons for SPICE model issues
 - Possible tool setup and operation issues
 - C_comp tool issues
- C_comp handling within [Driver Schedule] approach could be improved
- IBIS Version 3.2 model satisfied customer's immediate needs
- Unfortunately, target EDA tool(s) and operation remain a practical consideration

