

POLITECNICO DI TORINO

EPEPS IBIS Summit

San Jose, California - USA, October 28th 2015

Enhanced Macromodels for I/O Buffers

Gianni Signorini^(1,3), C.Siviero⁽²⁾, Igor Simone Stievano⁽²⁾, Stefano Grivet-Talocia⁽²⁾

(1) Intel Corporation Munich – Germany

(2) **Politecnico di Torino** Department of Electronics and Telecommunications Corso Duca degli Abruzzi 24, Turin – Italy

(3) **University of Pisa** Department of Information Engineering Via Caruso 16, Pisa – Italy

Agenda

- 1. Macromodels for SI&PI: Requirements
- 2. Two-piece Macromodels: overview and general model structure
- 3. Validation tests Single-ended and Differential Drivers
- 4. Conclusions and Future Development

Macromodels for SI/PI: Requirements

General macromodel structure

$$i_{out}(t) = F(IN, v_{out}(t), v_{dd}(t))$$

$$i_{dd}(t) = G(IN, v_{out}(t), v_{dd}(t))$$

<u>Requirements for SI/PI Co-Simulation:</u>

- Accuracy of currents and voltages at output and supply ports
- $i_{dd}(t) \& v_{dd}(t) \& v_{out}(t)$ mutual effects (distortions & timing)
- Speed-up factors, compatibility with SPICE solver, ...

Two-Piece Macromodels

$$i_{out} = F(IN, v_{out}, v_{dd})$$

$$i_{dd} = G(IN, v_{out}, v_{dd})$$

$$i_{out} = w_H i_H + w_L i_L$$

$$i_{dd} = w_H i_{dH} + w_L i_{dL} + \delta_i$$

Most state-of-the-art macromodels adopt a "two-piece" structure. Key differences are:

- $w_{H/L}(t)$ VS $w_{H/L}(t, v_{dd}(t))$
- Approximations on $i_{H/L}$ (static & dynamic)
- Estimation of δ_i

4

Static & Dynamic Characteristics: IBIS

For a given input-state (H,L):

- output static characteristics are extracted with a .DC sweep. Results stored in I-V tables (PU/PD)
- output dynamic characteristic corresponds to the *i-v* behavior of a capacitor C_{COMP}

 $i_{out} = I_{out,static} + i_{out,dynamic}$

Weighting Functions: IBIS

(At least) **two .TRAN simulations** are needed to characterize the *rising* and *falling* switching behaviour of the output port. Output voltages are stored in **V-t tables**

The SPICE solver uses the tables to solve a **2EQ/2UK** problem, and extracts $K_U(t)$ and $K_D(t)$

$$\forall t: \begin{cases} i_{out,1} = k_U(I_{H1} + i_{H1}) + k_D(I_{L1} + i_{L1}) \\ i_{out,2} = k_U(I_{H2} + i_{H2}) + k_D(I_{L2} + i_{L2}) \\ & & & \\$$

Supply Current: IBIS

From IBIS v5.0 onwards, IBIS model structure has been extended in order to **model supply-current profiles**.

Using the **same .TRAN simulations**, supply-current profile $i_{COMP1,2}$ is stored in $I_{COMP} - t$ tables

From $I_{COMP} - t$ **tables**, Pre-Driver/Crowbar current can be computed as $i_{PRE} = i_{COMP} - i_{out}$

Supply-Dependency: IBIS

Proposed Enhancements: Static Characteristics

The static characteristics are now extracted with **nested .DC sweeps** at **output <u>and</u> supply** ports.

1 output, 1 supply, 1 current: 3D-surface

 $I_S = F(V_{out}, V_{dd})$

Such 3D surfaces are calculated for:

 $I_{SH}(V_{out}, V_{dd})$ $I_{SL}(V_{out}, V_{dd})$ $I_{dd,SH}(V_{out}, V_{dd})$ $I_{dd,SL}(V_{out}, V_{dd})$

SVD Approximation of 3D Surfaces

$$y \cong F(V_{out}, V_{dd}) = \sum_{k=1}^{N} \sigma_k \varphi_{1,k}(V_{out}) \varphi_{2,k}(V_{dd})$$

SVD-approximation can be written as:

- SPICE Netlist (vcvs, cccs, ...)
- Verilog-A Code

Proposed Enhancements: Dynamic Characteristics

Dedicated $v_{out}(t)$ and $v_{dd}(t)$ stimuli are applied, simultaneously.

Dynamic characteristics are reproduced by **rational approximations** obtained post-processing the simulation results using **Time-Domain Vector-Fitting** (**TD-VF**) algorithms.

> $i_{out,H} = f(v_{out}, v_{dd})$ (e.g., pull-up dynamic MISO TDVF model)

 $i_{out,H}(v_{out}, v_{dd})$ $i_{out,L}(v_{out}, v_{dd})$ $i_{dd,H}(v_{out}, v_{dd})$ $i_{dd,L}(v_{out}, v_{dd})$

and implemented as:

- SPICE Netlist
- Verilog-A models

EPEPS IBIS Summit – San Jose, California – October 28th, 2015 G. Signorini, C. Siviero, I. S. Stievano, S. Grivet-Talocia

Proposed Enhancements: Weighting Functions

 $V_{dd} \in [80\%, ..., 100\%, ..., 120\%] \times V_{DD}$ (nominal)

Weighting functions w_H and w_L are calculated for several V_{dd} values.

This allows the creation of 3D-surfaces

 $w_H(t, v_{dd})$ and $w_L(t, v_{dd})$

reproducing the complex dependency of the switching events on VDD.

Comparative Summary

	IBIS v5.1	PROPOSED
OUTPUT STATIC	2D I-V Tables	3D Surfaces $F_x(V_{out}, V_{dd})$
OUTPUT DYNAMIC	Capacitive С _{сомР}	State-space models $f_x(v_{out}, v_{dd})$
WEIGHTING FUNCTIONS	2EQ/2UK @VDD _{NOM} $k_U(t)$ and $k_D(t)$	3D Surfaces $w_{L2H}(t, v_{dd})$ and $w_{H2L}(t, v_{dd})$
SUPPLY CURRENT	$I_{COMP} - t$ Table	3D Surface $\delta_i(t, v_{dd})$
SUPPLY EFFECTS	Static Modulation K _{SSO_PU(PD)}	3D surfaces & MISO models Static/Dyn/Timing Effects

MPILOG Model Implementation

Validations: Ideal Supply

IBIS: timing ⊗, output/supply ☺ -- **MPILOG**: timing/output/supply ☺☺

5

mpilog

4

5

Validations: Non-Ideal PDN

Validations: LPDDR3 SI/PI Co-Simulation

Macromodeling of Differential I/O-Buffers

Low-Power Voltage-Mode Drivers

Example of Circuit Topology

VDD $V_{\text{REG},1}$ **Output Swing and Common-Mode** can be configured tuning an internal VREG V_{REG,2} $V_{\text{DIFF},1}$ CM,1 **Reduced Swing to minimize** power consumption **Impact of LDO performance** on output signals *i*_{H-bridge} $\partial_i(t)$ VDD INOM 0.22 VREF ∑ 0.21 CLDO VLDO ╢╌ 0.2 0.19 C_{LDO}=10pF C_{LDO}=40pF Ideal LDO 0.16 0.14 Σ 0.12 NXX AXX AXX AXX AXX A Perturbations $\partial_i(t)$ across i_{NOM} introduce voltage bounce $\Delta VLDO(t)$ (depending on LDO dynamics) 0.08 0.06 **®** Distortions on output signals ٠ 0.04 41 42 43 44

Validation Test

PROPOSED model structure:

V_{REG}-induced effects are correctly captured (Signal distortion, common-mode noise, ...)

IBIS model-structure cannot reproduce the effects introduced by the internal V_{REG} . (*V-t vs "long"* V_{REG} regulation transient) (*I-V* & C_{COMP} vs complex $Z_{LDO}(f)$)

Conclusions and Future Enhancements

Enhanced two-piece model structure (to accurately reproduce **output** and **supply ports** :

- **SVD + truncation-process** for (multi-dimensional) Static Char.
- Multiple-Input **TDVF** for Dynamic Characteristic
- 3D switching characteristics w(**t**, **V**_{DD})

Flexible and modular modelling solution

Model implementation in **SPICE/Verilog-A**

IBIS compliant (v5.1/6.0) via [External Model] keyword

Validation tests highlight good speed-up factors (x350 +) and excellent accuracy in SI/PI co-simulations

What's next?

- Pre/De-Emphasis stages in high-speed transmitters
- Continuous-time linear equalizers in high-speed receivers

Thank you for the attention!