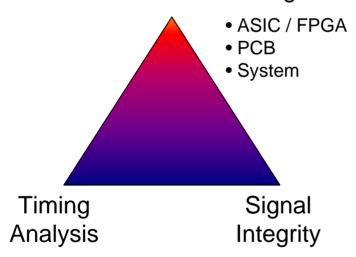
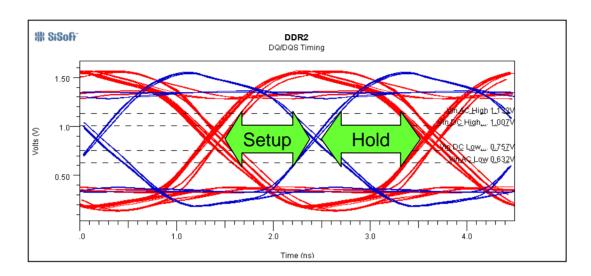
System-Level Timing Closure Using IBIS Models

Barry Katz
President/CTO, SiSoft
Asian IBIS Summit

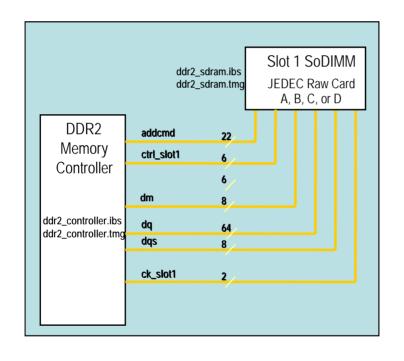

Agenda

- High Speed System Design
- Establishing timing model
 - Derivation of timing equations
 - Idealized timing analysis
 - The role of signal integrity
 - Reconciling signal integrity with timing
- Pre-route exploration
- Driving physical design
- Post-route validation
- Design analysis reuse
- Case study: DDR2 memory

High Speed System Design ... Not Just "Signal Integrity"


Constraint-Driven Design

- High Speed Design involves multiple disciplines
- Changes in any area drive changes in others
- Mastery of modeling details & process flow is <u>essential</u> for success


System Level Timing Closure

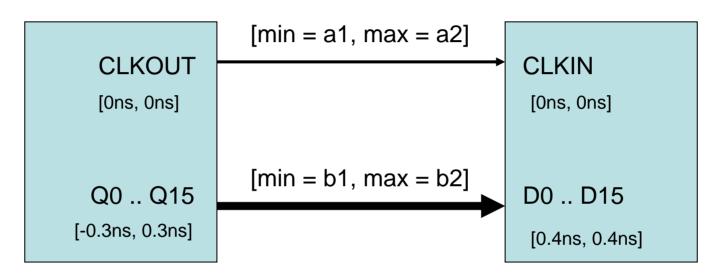
- Successful high speed design requires a rigorous methodology for ensuring positive design margin across all combinations of:
 - Component timing (process)
 - Voltage & temperature
 - Package & PCB routing lengths
 - PCB manufacturing variations (Z_0 , loss)

Establishing Timing Budgets

- High speed interfaces have one or more "transactions" that require timing closure
- Memory example:
 - Address/control
 - Data read
 - Data write
 - Strobe to Clock
- Timing relationships must be identified and closed for each different transaction

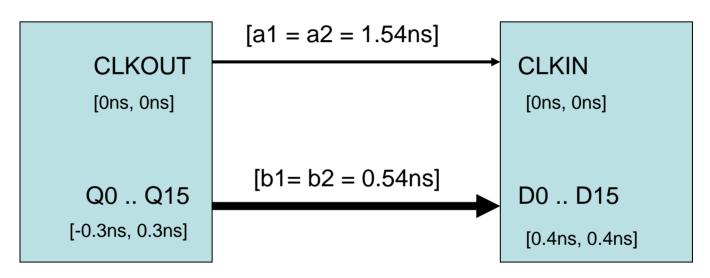
Source-Sync Transaction Example

- Establish component timing & transfer protocol
- Derive timing equations
- Idealized timing analysis
- Signal integrity analysis and Timing Closure



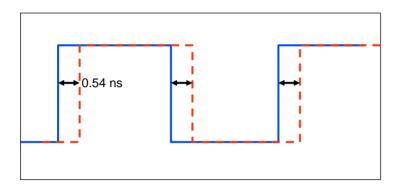
Component Timing, Transfer Protocol

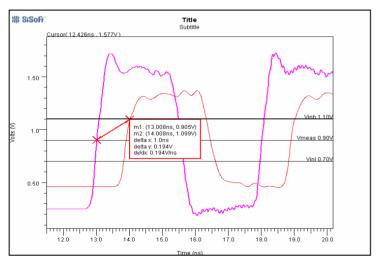
Derive Timing Equations




```
Setup margin = [early clock] – [late data] – [setup requirement]
= [0ns + a1] - [0.3ns + b2] - [0.4ns]
= a1 - b2 - 0.7ns
```


Idealized Timing Analysis

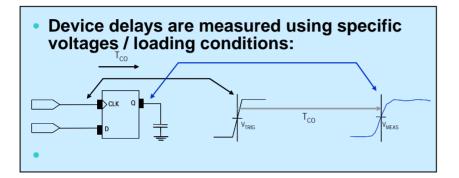

Minimum data length = 3", at 180ps/in = 0.54ns

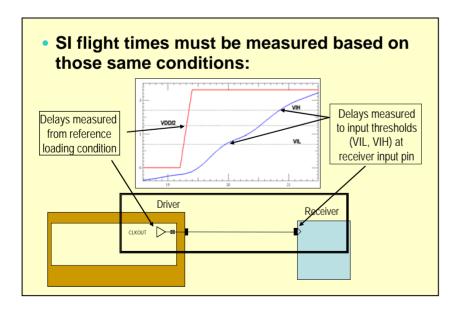

Setup margin =
$$a1 - b2 - 0.7ns$$

= $1.54ns - 0.54ns - 0.7ns$
= $0.3 ns$

The Role of Signal Integrity

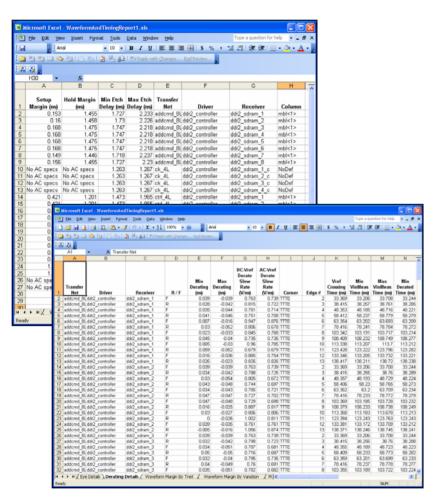
Idealized Delays




Real-World Delays

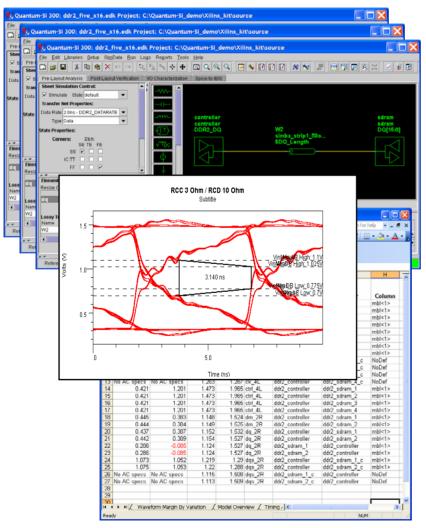
- Detailed analysis of digital switching behavior
- IBIS or HSpice models define I/O buffer behavior
- Accounts for
 - Actual circuit loading
 - Reflections / ringing
 - Circuit topology
 - Inter-symbol interference
 - Switching thresholds

Reconciling SI with Timing



- Static timing and signal integrity measurements <u>must</u> be compatible
- SI measurements are "normalized" to conditions under which loading is specified
 - IBIS Vref, Cref, Rref, Vmeas
- Timing Closure occurs when integrated timing/SI results show acceptable setup/hold margins

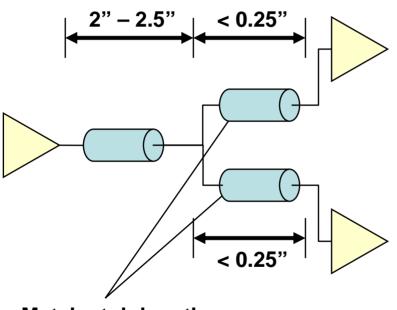
Building an Executable Timing Model



- For each interface, all transactions must be validated for all cases:
 - Component timing (process)
 - Voltage, temperature
 - PCB variations
- Creating an executable timing model to perform automatic regression is ideal
- Possibilities
 - Excel
 - Custom scripting
 - EDA tools

$$t_{\text{cycle}} = t_{\text{co}} + t_{\text{final settling}} + t_{\text{setup}} + t_{\text{skew}} + t_{\text{jitter}} + t_{\text{SSO}} + t_{\text{ISI}}$$

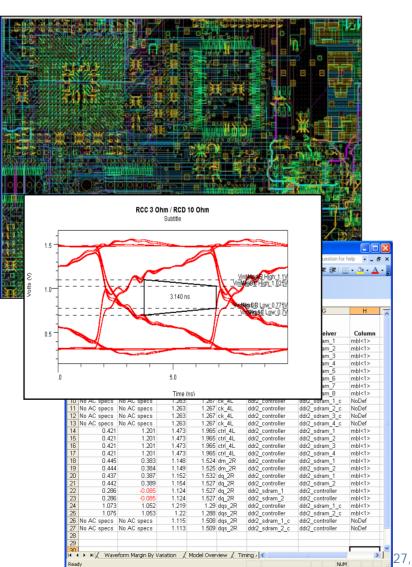
Pre-Route SI Exploration



- Pre-route simulations model planned
 - Drivers
 - Receivers
 - Routing topology & lengths
 - Termination
- Simulated interconnect delays are extracted and plugged back into the Executable Timing Model
- Setup and hold margins are calculated for temperature, process and voltage corners

Asian IBIS Summit - Shanghai, China - October 27, 2006

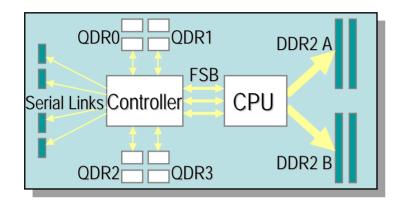
Driving Physical Design



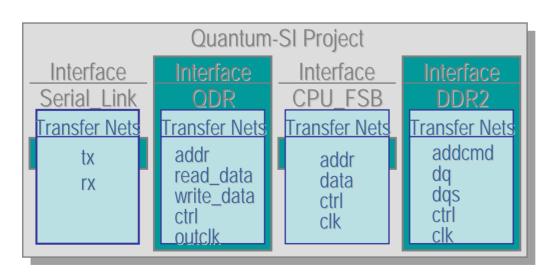
Match stub lengths to within 0.2"

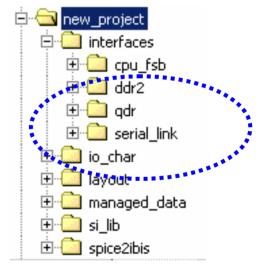
- Pre-route SI/Timing analysis defines PCB routing rules
- Rules usually include pin ordering, length limits and stub matching
- Driving automated rules into PCB CAD is essential

Post-Route Validation



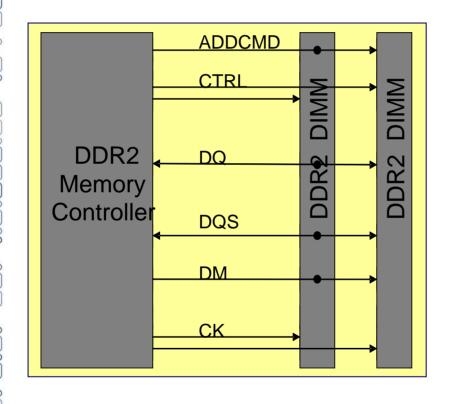
- Routed topologies are extracted from PCB database and simulated
- Simulated interconnect delays are extracted and plugged back into system timing model
- Setup and hold margins are calculated for temperature, process and voltage corners




7. 2006

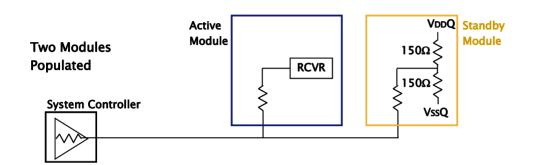
Design Analysis Reuse

Once all the SI/timing data for an interface has been captured, it should be possible to directly reuse that information for multiple instances in a project or other projects



Each interface kit contains net class schematics, timing data & SI models

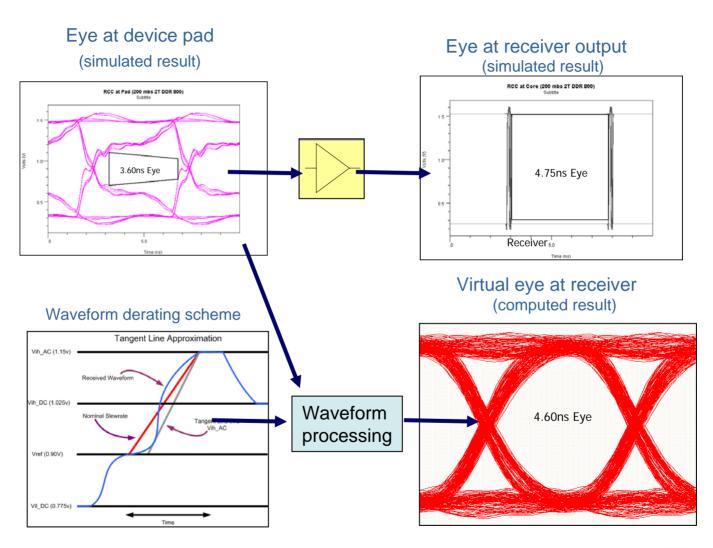
Case Study: DDR2 System Memory


- DDR2 supports one or two DIMM modules
- DIMM Modules
 - Registered and Unbuffered
 - 4 to 18 memory devices
- Two module, data write transaction is presented here
- Complete case study:

"Features and Implementation of High-Performance 667Mbs and 800Mbs DDRII Memory Systems"

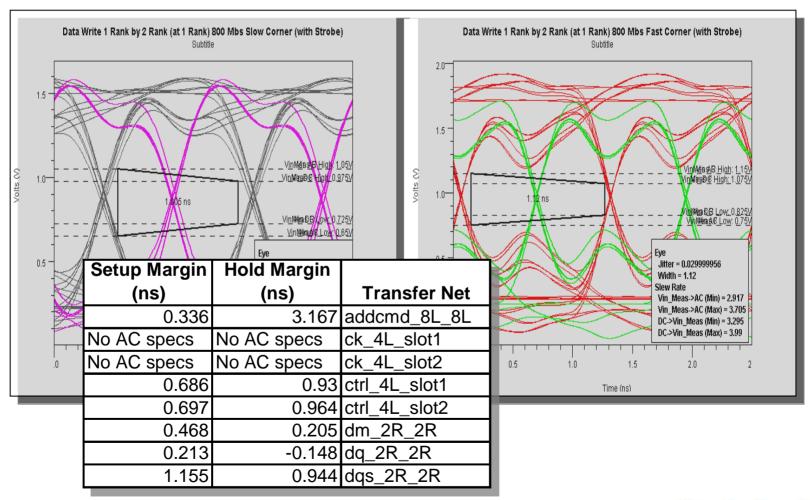
- Presented by Micron & SiSoft
- DesignCon West, 2005
- http://www.sisoft.com/papers.asp

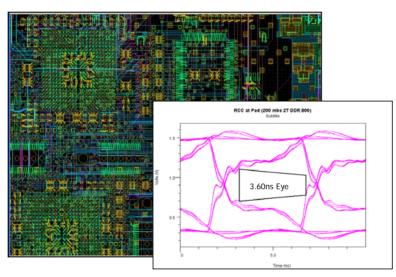
DDR2 Data Write Configuration



Write Configurations							
Configuration	Write to	DQ Active-Term Resistance					
		Controller	Dram at Slot 1		Dram at Slot 2		
			Front Side	Back Side	Front Side	Back Side	
2R / 2R	Slot 1	No Term	No Term	No Term	50 or 75 ohm	No Term	
211 / 211	Slot 2	No Term	50 or 75 ohm	No Term	No Term	No Term	
2R / 1R	Slot 1	No Term	No Term	No Term	50 or 75 ohm	Empty	
	Slot 2	No Term	50 or 75 ohm	No Term	No Term	Empty	
1R / 2R	Slot 1	No Term	No Term	Empty	50 or 75 ohm	No Term	
	Slot 2	No Term	50 or 75 ohm	Empty	No Term	No Term	
1R / 1R	Slot 1	No Term	No Term	Empty	50 or 75 ohm	Empty	
IN/IN	Slot 2	No Term	50 or 75 ohm	Empty	No Term	Empty	
2R / Empty	Slot 1	No Term	150 ohm	No Term	Empty	Empty	
Empty / 2R	Slot 2	No Term	Empty	Empty	150 ohm	No Term	
1R / Empty	Slot 1	No Term	150 ohm	Empty	Empty	Empty	
Empty / 1R	Slot 2	No Term	Empty	Empty	150 ohm	Empty	

- Termination strategy is dynamic; depends on how many DIMMs are present and which device is receiving
- Simulation
 environment must
 switch receiver
 models based on
 which case is being
 analyzed


Slew Rate Derating – "Virtual Eye"


DDR2 Analysis Results Data Write Slow / Fast Corners

0000

Summary

Setup Margin	Hold Margin	
(ns)	(ns)	Transfer Net
0.336	3.167	addcmd_8L_8L
No AC specs	No AC specs	ck_4L_slot1
No AC specs	No AC specs	ck_4L_slot2
0.686	0.93	ctrl_4L_slot1
0.697	0.964	ctrl_4L_slot2
0.468	0.205	dm_2R_2R
0.213	-0.148	dq_2R_2R
1.155	0.944	dqs_2R_2R

- High-speed system design requires a rigorous, repeatable methodology for achieving Timing Closure
- Static Timing, Signal Integrity, and physical design rules are all interrelated
- An Executable Timing Model allows for a user to validate all transactions across all cases
- Signal Integrity analysis must be performed in accordance with the system timing model

