KEI Systems

Is Typical Analysis Enough? What Is Corner Condition?

Asian IBIS Summit Tokyo, Japan November 18, 2016

> Shinichi Maeda KEI Systems E-mail: KEI-Systems@jcom.home.ne.jp

Outline

- Typical versus Worst Case
- Would Typical Analysis be enough?
- What would be the Worst Case?
- Would Worst Case Analysis be (necessary/required)?
- How to judge Sign-Off
- Concerns for IBIS-AMI

Tolerance of IC Characteristics

Typical Versus Corner

- IO Model
 - Fast/Typical/Slow
 - Driver: Output Impedance, Ramp
 - Receiver: Threshold Voltage
- C_Comp, Package L/C/R
- Vcc Voltage
 - +- 5% to 10% from Vtyp
- IC Temperature

Typical Versus Corner

- DDR4 2400
 - Driver: DQ
 - Receiver: DQ

Package Model

[Package]					
	typ	min	max		
R_pkg	414.33m	389.21m	442.82m		
L_pkg	1. 95nH	1. 49nH	2. 26nH		
C_pkg	0. 43pF	0. 35pF	0.80pF		
ı [Pin]	signal_name	e model_name	R_pin	L_pin	C_pin
A1	VDD	POWER			
A2	VSSQ	GND			
A3	NF	NF_INPUT	392.29m	1.53nH	0. 43pF
A7	NF	NF_INPUT	439.07m	1. 75nH	0. 48pF
[Diff Pin] 	inv_pin vdiff	tdelay_typ	tdelay	_min	tdelay_max
3 4	150mV	-1ns	0ns		-2ns

• IO Model

	typ	min	max
C_comp	0. 920pF	0. 870pF	0. 970pF
C_comp_pullup	0. 4600pF	0. 4350pF	0. 4850pF
C_comp_pulldown I	0. 4600pF	0. 4350pF	0. 4850pF
[Model Spec]			
Timing spec test loa	ad voltage corners		
Vref	1.2000V	1.1400V	1.2600V

• IO Model (I-V)

[Pulldown]

Voltage	I(typ)	I(min)	I(max)
−1. 20000000E+00	-2. 37454740E-02	-2. 68204090E-02	-2. 14946320E-02
−1. 06548000E+00	-2. 28772684E-02	-2. 64700110E-02	-2. 06319538E-02

• IO M [Ramp] R_load = 50 typ	odel (V-	T)	min		rr	ıax	
dV/dt_r 4.12	35E-01/6.44	189E-11	3.8046E-0	1/8. 4106E-11	4.46	553E-01/5.	2562E-11
dV/dt_f 4.59	87E-01/6.23	372E-11	4. 3947E-0	1/7. 9203E-11	4.67	741E-01/4.	9982E-11
*******	******	******	******	*****	******	<*****	****
[Falling Wav	eform]						
V_fixture =	1. 2V						
V_fixture_mi	n = 1.14V						
V_fixture_ma	x = 1.26V						
R_fixture =	500hm						
C_fixture =	0F						
Time		V(typ)		V(min)		V(max)	
0.00000	00E+00	1.1999984	3E+00	1.13999700E	+00	1.259999	47E+00
5.00000	00E-12	1.1999984	9E+00	1.13999700E	+00	1.259999	48E+00
1.000000	00E-11	1. 1999984	9E+00	1.13999700E	+00	1. 259999	48E+00

Typical Versus Corner

Fast Typ Slow

Corner Setting

Comment in IBIS Model

1					
Corner Settin	ngs				
The corner se	ettings:				
Model Type	Tem	np VCC	IO VC	CINT F	Process corner
1.2V LVTTL/	LVCMC)S			
Typical	25C	1.2V	1.1V	Nominal	
Minimum	85C	1.14V	1.05V	Slow	
Maximum	0C	1.26V	1.15V	Fast	
1.5V LVTTL/	LVCMC)S			
Typical	25C	1.5V	1.1V	Nominal	
Minimum	85C	1.425\	/ 1.05V	Slow	
Maximum	0C	1.575	/ 1.15V	Fast	

Yield Ratio of IC

- New Technology, Sample Shipment
 - 40~60% ?
- Early Lot
 - 50~80%
- Mass Production
 - 80%~
- Cause of Failure
 - Lattice Defect
 - Die Size
 - Process Error Rate
 - Fast/Slow

Proficiency of Process

Typical Volume Characteristics?

- How Differ from Early Lot and Mass Production Lot ?
 - Tune-up the Process to Increase Yield Rate
- Requires Real Characteristics Curve

Very Few FF/SS Case

When Driver's Fast Rate=2%, Receiver's Fast Rate=0.5%

Elements of PCB Error

- Many Factors for Error
 - Fix the Effective Factor First
 - What is the Most Effective Source?
- What % Error is Acceptable for SI Reliability?

Conclusion

- Typical Analysis is not Sign-off Analysis
- Corner Analysis is necessary for Sign-off
- In some case, Corner Analysis is Over Design
- If the Corner Analysis can be performed with minor change, those changes should be made.
- If the Corner Analysis by major design change and increased cost, these changes need to be reviewed.
- IC's Yield rate, Fast/Slow rate is unknown
 - IC Fabrication details are confidential.
- Know-how
 - Correlation between Simulation and Measurement
 - Analyze PCB Fab. Error Rate and Error Factors