Suggestion on Issuing VSR/CAUI-4 Based IBIS-AMI Model

Asian IBIS Summit (Shanghai), November 11, 2016 Zhengrong Xu, Huawei Technologies

www.huawei.com

Industry Trend: Optical Module with CDR Inside Becomes a Standard Beyond 25Gbps/lane

Electrical interface between chip and module becomes a SerDes to SerDes connection.

Electrical Interface Compliance Test Defined in OIF CEI-28G-VSR / IEEE 802.3bm CAUI-4

- TP1a is the test point after CTLE inside CDR device. The real eye diagram at TP1a can't be measured
- A standard "Reference CTLE" and "Golden PLL" model is defined for compliance test instead

Z1/2π (GHz)

8.31

7.10

5.68

4.98

4.35

3.82

3.43

3.00

2.67

Table 13-1. Host-to-Module Electrica	I Specifications at TP1a (host output)
--------------------------------------	--

Parameter	Min.	Max.	Units	Conditions
Differential Voltage pk-pk	-	900	mV	
Common Mode Noise RMS	-	17.5	m∨	See Section 13.3.5
Differential Termination Resistance Mismatch	-	10	%	At 1 MHz See Section 13.3.6
Differential Return Loss (SDD22)	-	See Equation 13-19	dB	
Common Mode to Differential conversion and Differential to Common Mode Conversion (SDC22, SCD22)	-	See Equation 13-21	dB	
Common Mode Return Loss (SCC22)	-	-2	dB	From 250 MHz to 30 GHz
Transition Time, 20 to 80%	10	-	ps	See Section 13.3.10
Common Mode Voltage	-0.3	2.8	V	Referred to host ground
Eye Width at 10 ⁻¹⁵ probability (EW15) ¹	0.46	-	UI	See Section 13.3.11
Eye Height at 10 ⁻¹⁵ probability (EH15) ¹	95	-	mV	See Section 13.3.11
1. Open eye is generated through the use of a reference Continuous Time Linear Equalizer (CTLE)				

Note: a reference clock recovery unit (CRU) with a first order transfer function with a 3 dB tracking bandwidth of fb/2578.

Oscilloscope Measurement Solution for TP1a

- Post-process the measurement waveform with software reference CTLE and golden PLL based on formula
- Use the noise and jitter extrapolation to get the EH / EW @ BER=1e-15

Figure 13-8. Host output test setup

Simulation Solution for TP1a (1): Acquire Certain Module's CDR IBIS-AMI Model

- Advantage:
- Display real performance of certain optical module's CDR \geq
- Supported by commercial EDA tools \geq
- Disadvantage:
- Not all vendors can provide their CDR's IBIS-AMI model \geq
- Not the VSR/CAUI-4 defined compliance analysis method \geq

Simulation Solution for TP1a (2): Waveform Post-processing Based on VSR/CAUI-4 Spec

- Similar to measurement, current simulation has to be done with self-programmed data post-processing script
- Without reference CTLE IBIS-AMI model, VSR/CAUI-4 electrical interface simulation can't be achieved in EDA tools

Suggest IBIS Organization Issue the IBIS-AMI Model of Standard Reference CTLE for Customers

- Suggest IBIS Organization issue the standard VSR/CAUI-4 compliant IBIS-AMI model including reference CTLE and golden PLL
- As reference CTLE is a definite formula and fully meets LTI system, it's not difficult to generate such a standard model

Further Discussion

- The issue of the VSR/CAUI-4 based IBIS-AMI model may provide a way for optical CDR vendor to do the correlation between their setting and MSA EQ setting
- Although MSA defined the unified I2C EQ setting, different optical module vendor uses different CDR \geq and different CTLE, which may have different mapping relationship between MSA EQ and CDR's CTLE.
- Without a unified correlation method, how to keep the reliability that passing the reference CTLE test \geq of TP1a can pass the error test TABLE 6-34 INPUT EQUALIZATION (PAGE 03H BYTES 234-235)

SFF Committee

SFF-8636

Specification for

Management Interface for Cabled Environments

Value	Transmitter Input	t Equalization
	Nominal	Units
11xxb	Reserved	
1011b	Reserved	
1010b	10	dB
1001b	9	dB
1000b	8	dB
0111b	7	dB
0110b	6	dB
0101b	5	dB
0100b	4	dB
0011b	3	dB
0010b	2	dB
0001b	1	dB
0000b	0	No EQ

- CTLE non-linearity feature should be considered in future
- Currently formula-based model without considering the non-linearity \geq

Thank you

www.huawei.com

