True Differential IBIS model for SerDes Analog Buffer

Shivani Sharma, Tushar Malik, Taranjit Kukal

IBIS Asia Summit Yokohama, Japan Nov. 20, 2014

- Overview of Differential IBIS
- Description of test-case
- Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- Conclusion

Overview of Differential IBIS

- Description of test-case
- Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- Conclusion

Overview of Differential IBIS

- Current approaches
 - Traditionally, differential buffer have been modeled as
 - Pseudo Differential buffer using two Single-ended IBIS models
 - Accuracy can suffer if there is substantial differential current which is the case with Serial Link analog buffers that has series elements between PADP and PADN
 - External Model approach: Call to buffer netlist
 - Netlist (IP) needs to be revealed
 - External Model approach: Call to S-parameter model
 - Rx buffer needs to be characterized as S-parameters

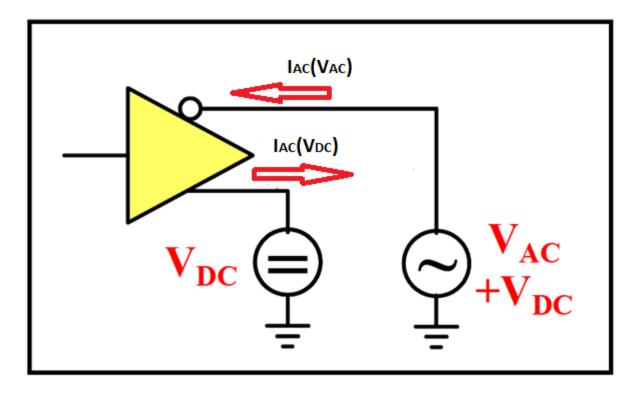
Overview of Differential IBIS

- Alternate approach
 - While S-parameter approach is best suited for analog buffers in serial links, we provide an alternate way to model it through standard IBIS tabular format with use of series elements to model differential current.
 - This extends the approach suggested in IBIS cookbook that suggests modeling of differential current using series Resistance.
 - Here we propose use of reactive elements (R/L/C) to model differential current.

- -Overview of Differential IBIS
- -Description of test-case
- -Flow used to create differential IBIS model
- -Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- -Conclusion

Description of test-case

- IBIS modeling of Serial Link RX IO
- 10Gbps Serial link
- 28nm technology node
- Typical process node
- Rx analog buffer had additional blocks for equalization that were modeled as AMI code
 - Frontend attenuation
 - VGA
 - CTLE
 - DFE
 - CDR



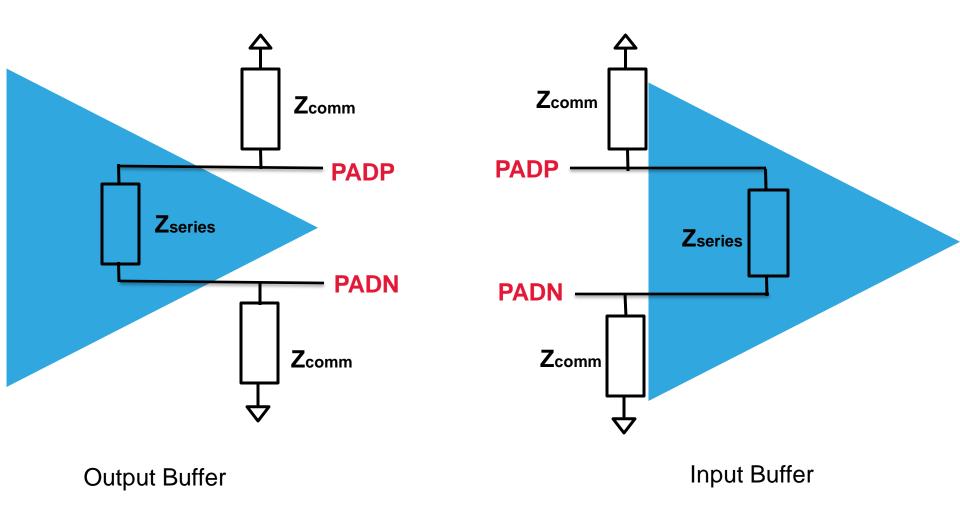
- Overview of Differential IBIS
- Description of test-case
- Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- Conclusion

Flow used to create differential IBIS model - True differential

Setup for common mode and differential mode impedance extraction

Flow used to create differential IBIS model - True differential

$$I _ Diff = I_{AC}(V_{DC})$$
$$I _ Comm = I_{AC}(V_{AC}) - I_{AC}(V_{DC})$$


-I_Diff flows through series element between inverting and non-inverting pins

-I_Comm flows only through common mode impedance

Flow used to create differential IBIS model

- True differential buffer with series element Zseries

Flow used to create differential IBIS model

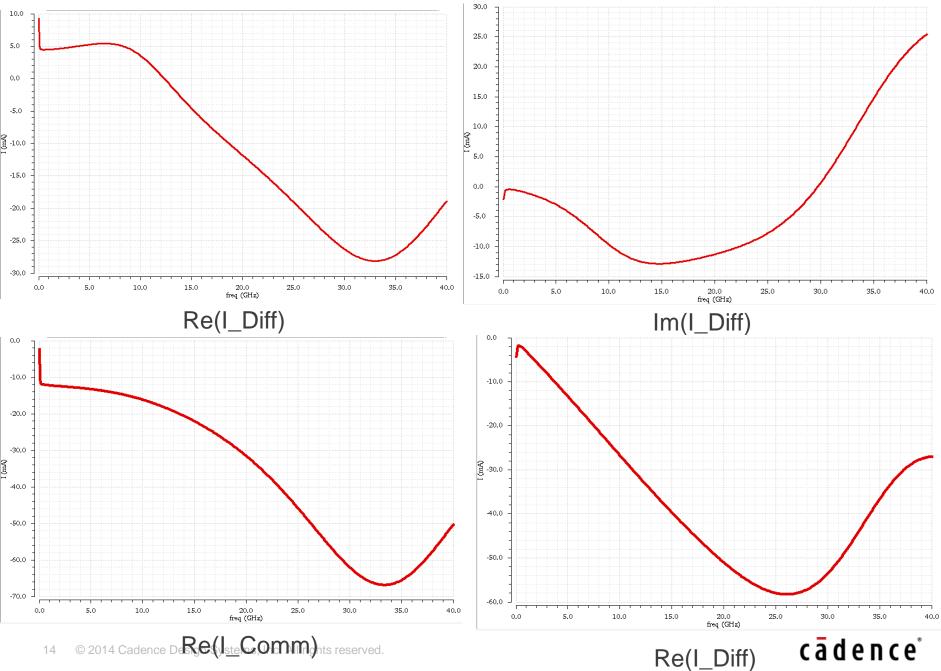
- Differential and common mode impedance calculations
- Series Reactance = $X_{series} = \frac{V_{AC}}{\text{Im}(I _ Diff)}$
- Series Resistance= $R_{series} = \frac{V_{AC}}{\text{Re}(I \quad Diff)}$

Common mode Resistance=

$$R_a = \frac{V_{AC}}{\text{Re}(I _ Comm)}$$

Common mode Reactance=

$$X_a = \frac{V_{AC}}{\text{Im}(I _Comm)}$$


- Flow used to create differential IBIS model
- Differential and common mode impedance calculations

- Depending on sign, reactance could be inductive or capacitive
- Impedance to be calculated at most likely operating frequency of buffer
- For 10G serial link Rx buffer testcase

Series Model	R=220ohms	L=9.8nH
Common mode Model	R=80ohms	C=0.223pF

Common mode and differential currents

Flow used to create differential IBIS model

4

4

- IBIS model

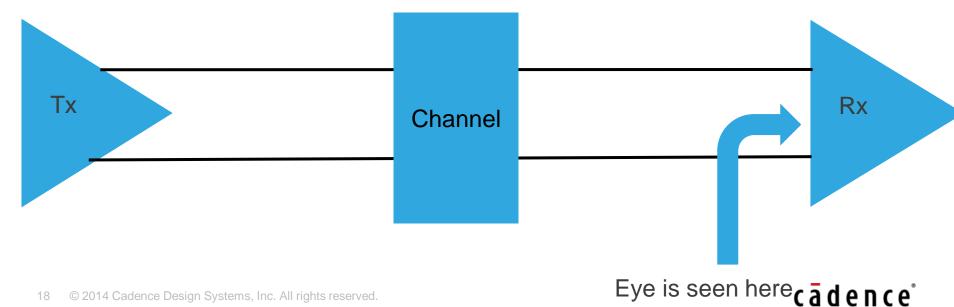
Parallel RL network • present as Zseries, modeled using "Model_type Series"

***** ***** [Series Pin Mapping] pin 2 model name function table group 5 Rpath 5 Lpath ******** [Model] Rpath Model type Series Polarity Non-Inverting Enable Active-High typ min max 0.0pF 0.0pF 0.0pF C comp min max typ [Voltage Range] 1.0 NA NA **** R(typ) R(min) R(max) [R Series] 220 NA NA ******** [Model] Lpath Model type Series Polarity Non-Inverting Enable Active-High typ min max 0.0pF 0.0pF 0.0pF C comp min max tvp [Voltage Range] 1.0 NA NA 1.4.4.4.4.4.4.4.4. R(min) R(max) R(typ) [L Series] 9.8nH NA NA **LUUL**III

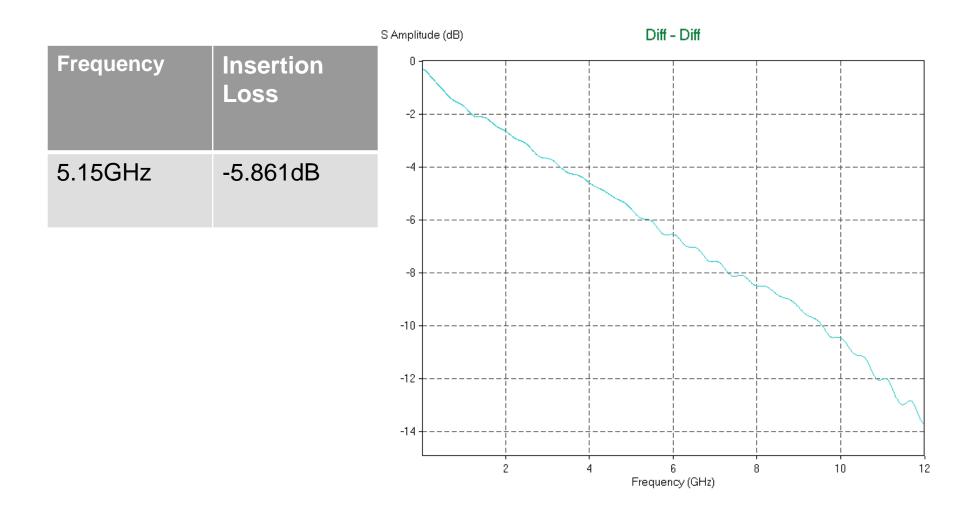
Flow used to create differential IBIS model - IBIS model

 Parallel RC network present as Zcomm, modeled using clamp I-V table and C_comp

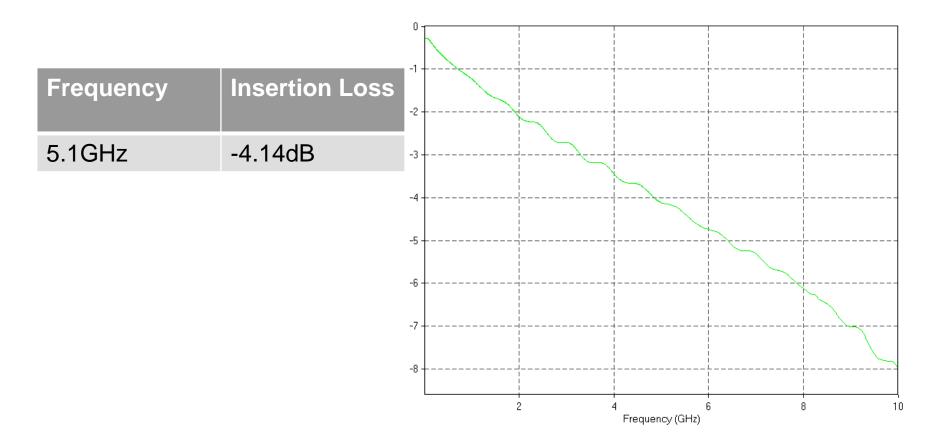
Model] Rx_in					
Nodel_type Input Vinl=1.5					
/in1-1.5					
1nn-2.5					
variable	+		min		
	typ		NA	max	
_comp		0.223pF		NA	
Temperature Range]		70		NA	
Voltage range]	3.3	3.3		NA	
	la ale de		a ala ala ala ala ala ala ala ala ala a	a de ale de ale de de de de de de de de d	
POWER Clamp]					
Voltage	T(trin) T(min)		T (max)		
voitage	т(сур)	I(typ) I(min)		I(max)	
-3.3000e+00	20.6250e-03 NA		NA		
0.0000e-00	00.0000e-00 NA		NA		
3.3000e-00	-20.6250e-03 NA		NA		
3.30000 00	20.02000 00	hA	NA		
				و بارو بارو بارو بارو بارو بارو بارو بار	
[GND Clamp]					
Voltage	I(typ)	I(min)	I (max	:)	
-3.3000e+00	-20.6250e-03	NA	NA		
0.0000e-00	00.0000e-00	NA	NA		
3.3000e-00	20.6250e-03	NA	NA		
5.50006 00	20.02006 00	INA	NA		


cādence[°]

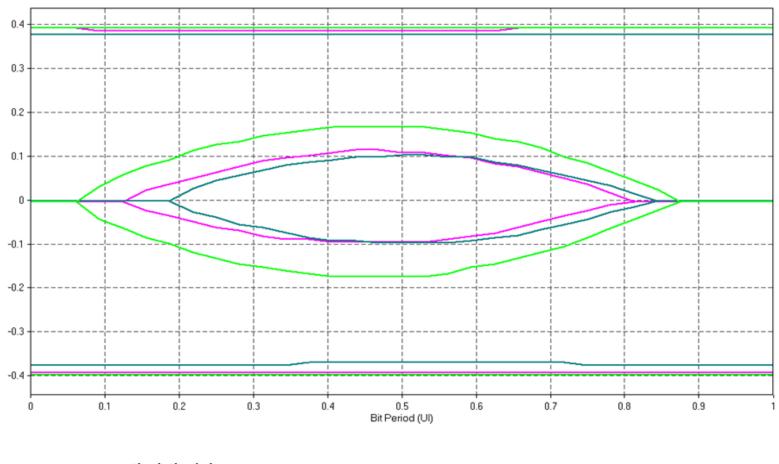
- -Overview of True Differential IBIS
- -Description of test-case
- -Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- -Conclusion



Comparison: Pseudo-differential vs. True-**Differential IBIS simulations**


- Serial Link Simulation Test-bench
 - 10Gbps
 - No Equalization
 - PRBS23
 - Tested on different channels

Channel 1


Channel 2



Comparison: Pseudo-differential IBIS vs. True-Differential IBIS vs. Circuit simulations

Voltage (V)

Comparison: Pseudo-differential IBIS vs. True-Differential IBIS vs. Circuit simulations

Channel 2

Voltage (V)

true-differential buffer IBIS simulation

- Overview of Differential IBIS
- Description of test-case
- Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- Conclusion

Conclusion

- Extended "Series Model Approach" in Cookbook for IBIS Version 4.0 to model differential and common-mode impedances for SERDES analog buffer.
- True differential model provides much better accuracy than pseudo differential IBIS for channel simulations in terms of
 - Jitter and eye opening
 - Reflection losses

cādence[®]

25 © 2014 Cadence Design Systems, Inc. All rights reserved.