True Differential IBIS model for SerDes Analog Buffer

Shivani Sharma, Tushar Malik, Taranjit Kukal

IBIS Asia Summit Taipei, Taiwan Nov. 17, 2014

- Overview of Differential IBIS
- Description of test-case
- Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- Conclusion

Agenda

Overview of Differential IBIS

- Description of test-case
- Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- Conclusion

Overview of Differential IBIS

- Current approaches
 - Traditionally, differential buffer have been modeled as
 - Pseudo Differential buffer using two Single-ended IBIS models
 - Accuracy can suffer if there is substantial differential current which is the case with Serial Link analog buffers that has series elements between PADP and PADN
 - External Model approach: Call to buffer netlist
 - Netlist (IP) needs to be revealed
 - External Model approach: Call to S-parameter model
 - Rx buffer needs to be characterized as S-parameters

Overview of Differential IBIS

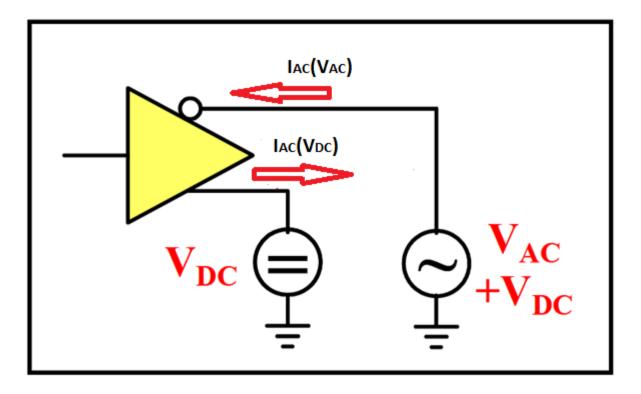
- Alternate approach
 - While S-parameter approach is best suited for analog buffers in serial links, we provide an alternate way to model it through standard IBIS tabular format with use of series elements to model differential current.
 - This extends the approach suggested in IBIS cookbook that suggests modeling of differential current using series Resistance.
 - Here we propose use of reactive elements (R/L/C) to model differential current.

Agenda

- -Overview of Differential IBIS
- -Description of test-case
- -Flow used to create differential IBIS model
- -Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- -Conclusion

Description of test-case

- IBIS modeling of Serial Link RX IO
- 10Gbps Serial link
- 28nm technology node
- Typical process node
- Rx analog buffer had additional blocks for equalization that were modeled as AMI code
 - Frontend attenuation
 - VGA
 - CTLE
 - DFE
 - CDR


Agenda

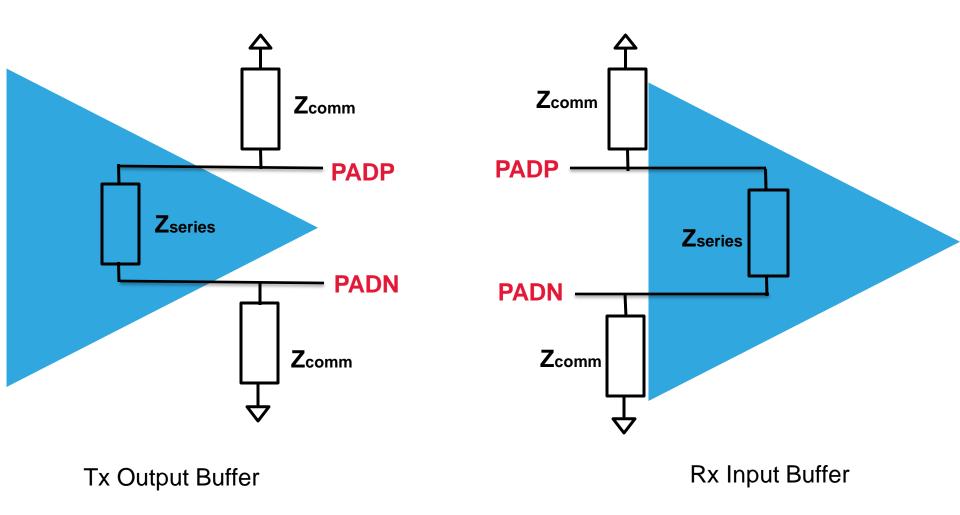
- Overview of Differential IBIS
- Description of test-case
- Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- Conclusion

Flow used to create differential IBIS model - True differential

Setup for common mode and differential mode currents extraction

Flow used to create differential IBIS model - True differential

$$I _ Diff = I_{AC}(V_{DC})$$
$$I _ Comm = I_{AC}(V_{AC}) - I_{AC}(V_{DC})$$


-I_Diff flows through series element between inverting and non-inverting pins

-I_Comm flows only through common mode impedance

Flow used to create differential IBIS model

- True differential buffer with series element Zseries

cādence

11 © 2014 Cadence Design Systems, Inc. All rights reserved.

Flow used to create differential IBIS model - True differential buffer with series element Zseries

- Zseries and Zcomm calculated at most likely operating frequency of buffer
- Assuming, at the most likely operating frequency of buffer, there could be
 - effective parallel RL circuit or effective parallel RC circuit between PADP and PADN (Zseries)
 - Effective L or C decided depending on sign of imaginary part of I_Diff
- Always effective parallel RC between any pad and ground (Z_{comm})

Flow used to create differential IBIS model

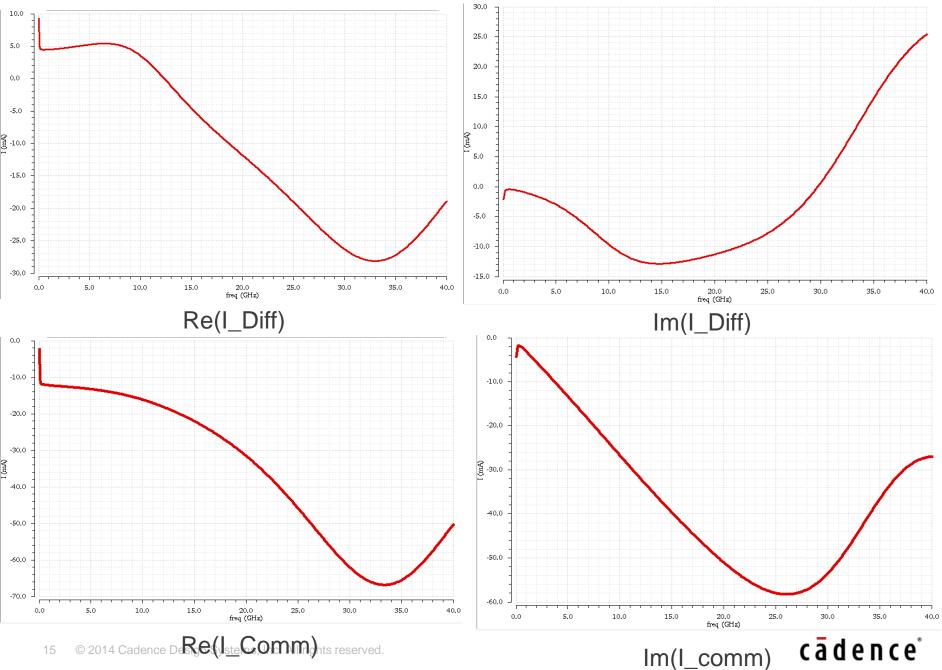
- Differential and common mode impedance calculations
- Effective Series Reactance = $X_{series} = \frac{V_{AC}}{\text{Im}(I _ Diff)}$

• Effective Series Resistance= $R_{series} = \frac{V_{AC}}{\text{Re}(I \quad Diff)}$

• Effective Common mode Resistance= $R_a = \frac{V_{AC}}{\text{Re}(I \quad Comm)}$

• Effective Common mode Reactance= $X_a = \frac{V_{AC}}{\text{Im}(I _ Comm)}$

Flow used to create differential IBIS model


- Differential and common mode impedance calculations
- For 10G serial link testcase

Rx Series Model	R=220ohms	L=9.8nH	
Rx Common mode Model	R=80ohms	C=0.223pF	
Tx Common mode Model	R=50 ohms	C=0.500pF	
Tx Series Model	Assume no series model		

• I_Diff and I_Comm plots for the testcase are shown next

cādence[°]

Common mode and differential currents

Flow used to create true-differential Rx IBIS model

4

4

- Rx IBIS model

Effective Parallel RL network present as Zseries, modeled using "Model type Series"

[Series Pin Mapping] pin 2 model name function table group 5 Rpath 5 Lpath ******** [Model] Rpath Model type Series Polarity Non-Inverting Enable Active-High typ min max 0.0pF 0.0pF 0.0pF C comp min max typ [Voltage Range] 1.0 NA NA **** R(typ) R(min) R(max) [R Series] 220 NA NA [Model] Lpath Model type Series Polarity Non-Inverting Enable Active-High min max typ 0.0pF 0.0pF 0.0pF C comp min tvp max [Voltage Range] 1.0 NA NA 1.4.4.4.4.4.4.4 R(min) R(max) R(typ) [L Series] 9.8nH NA NA

Flow used to create true-differential Rx IBIS model

- Rx IBIS model

 Effective Parallel RC network present as Zcomm, modeled using clamp I-V table and C_comp

[Model] Rx_in					
Model_type Input					
Vinl=1.5					
Vinh=2.5					
1					
variable	typ		min	max	
C_comp	0.	0.223pF		NA	
[Temperature Range]	7	70		NA	
[Voltage range]	3.3		NA	NA	
*****				ale	

[POWER Clamp]					
1					
Voltage	I(typ)	I(min)	I (max)		
1					
-3.3000e+00	20.6250e-03	3 NA	NA		
0.0000e-00	00.0000e-00) NA	NA		
3.3000e-00	-20.6250e-03	3 NA	NA		

[GND Clamp]					
_					
Voltage	I(typ)	I(min)	I(max)		
-3.3000e+00	-20.6250e-03	NA	NA		
0.0000e-00	00.0000e-00	NA	NA		
3.3000e-00	20.6250e-03	NA	NA		
1					
**********		• • • • • • • • • • • • • • •		****	

Flow used to create Tx IBIS model

L

- Tx IBIS model

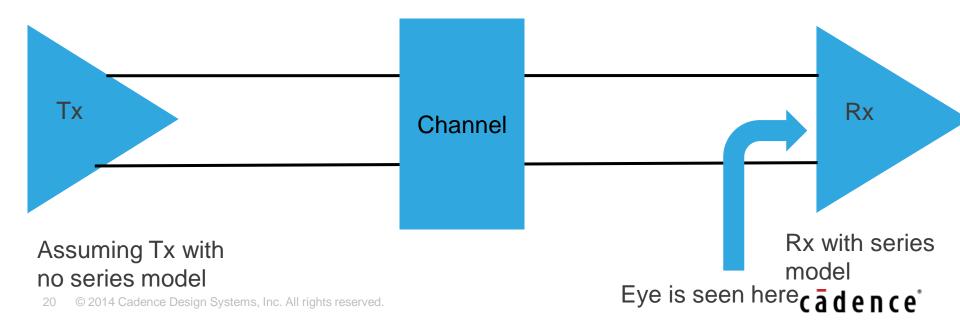
- Effective Parallel RC network present as Zcomm, modeled using Pulldown and Pullup I-V tables and C_comp
- Assume no series
 element Zseries present

i i					
variable		typ	min	max	
C_comp	C	.5pF	NA	NA	
[Temperature Range]		70	NA	NA	
[Voltage range]	1	.ov	NA	NA	
1					
· ************************************	******	******	*****	******	***
[Pulldown]					
[Pulldown]					
Voltage	I(typ)	I(min)	I(max)	
-1.000e+00	-2.00e-02	NA		NA	
0.0000e-00	0.00e-02 NA			NA	
1.000e+00	2.00e-02			NA	
I					
**********************	*******	******	*****	******	***

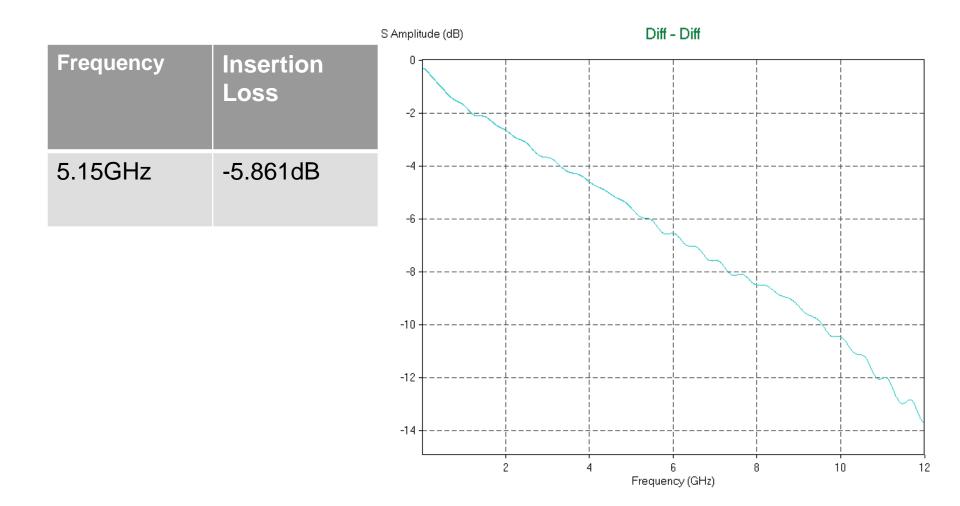
[Pullup]					
Voltage	I(typ)	I(mi	n)	I(max)	
-1.000e+00	2.00e-02	NA		NA	
0.0000e-00	0.0000e-00) NA		NA	
1.000e+00	-2.00e-02	NA		NA	
*******	*******	******	*****	******	***

[Ramp]					
L. C.					
variable typ		min		max	
dV/dt_r 0.600/0.024E-09		NA		NA	
dV/dt_f 0.600/0.	024E-09	NA		NA	
$R_load = 50$					
1				<u> </u>	~ -

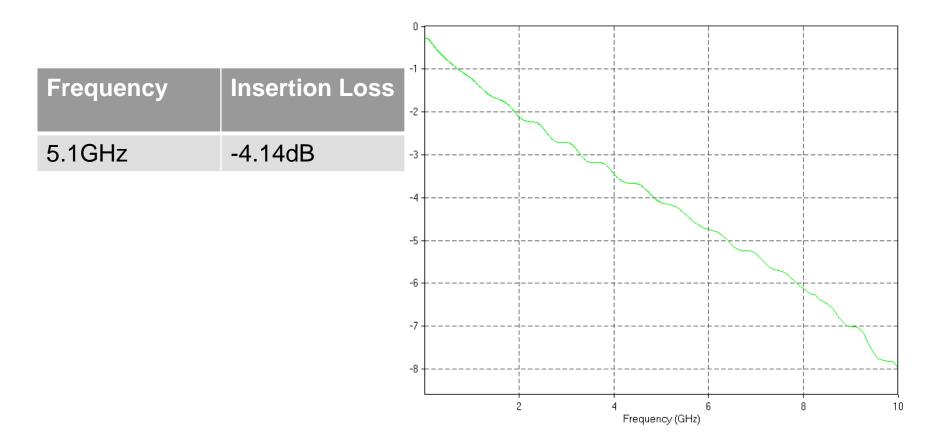
18 © 2014 Cadence Design Systems, Inc. All rights reserved.


Agenda

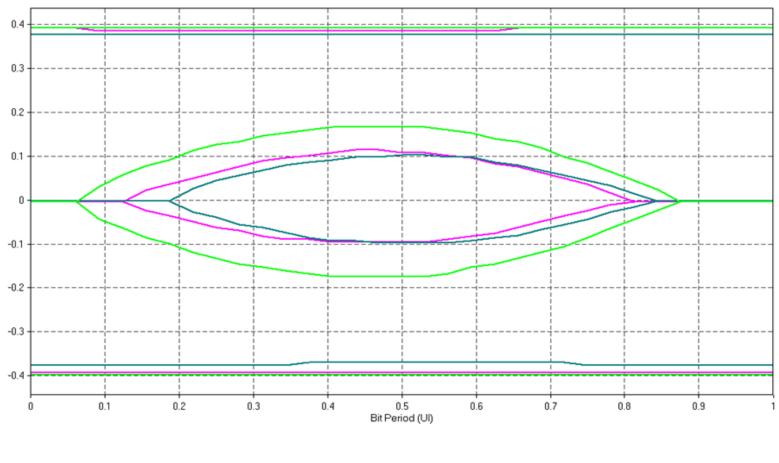
- -Overview of True Differential IBIS
- -Description of test-case
- -Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- -Conclusion

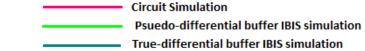


Comparison: Pseudo-differential vs. True-Differential IBIS simulations


- Serial Link Simulation Test-bench
 - 10Gbps
 - No Equalization
 - PRBS23
 - Tested on different channels

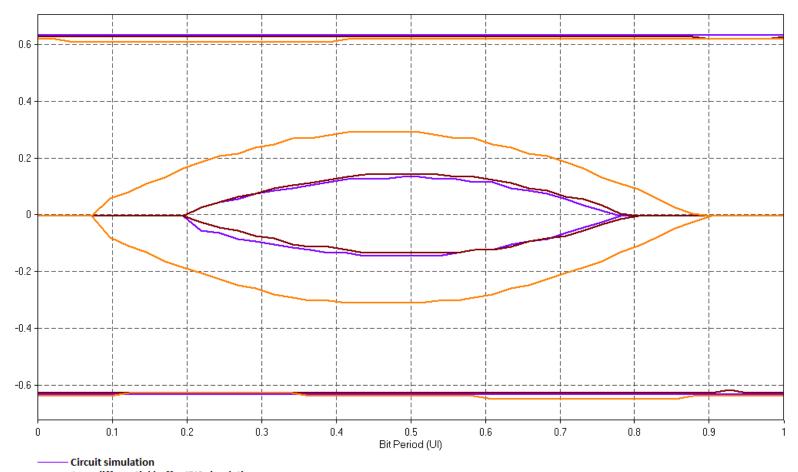
Channel 1


Channel 2



Comparison: Pseudo-differential IBIS vs. True-Differential IBIS vs. Circuit simulations

Voltage (V)



Comparison: Pseudo-differential IBIS vs. True-Differential IBIS vs. Circuit simulations

Channel 2

Voltage (V)

24

true-differential buffer IBIS simulation pseudo-differential buffer IBIS simulation

Agenda

- Overview of Differential IBIS
- Description of test-case
- Flow used to create differential IBIS model
- Comparison: Pseudo-differential vs. True-Differential IBIS Serial-Link
- Conclusion

Conclusion

- Extended "Series Model Approach" in Cookbook for IBIS Version 4.0 to model differential and common-mode impedances for SERDES analog buffer.
- True differential model provides much better accuracy than pseudo differential IBIS for channel simulations in terms of
 - Jitter and eye opening
 - Reflection losses

cādence[®]

27 © 2014 Cadence Design Systems, Inc. All rights reserved.