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Background 

• High speed serial design becoming very common 

• Increased reliance on s-parameter models in circuit 
simulation 

• S-parameters can have subtle (and often not subtle) 
problems in simulation 

• How can we best discover or avoid these issues 
before circuit simulation? 
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Agenda 

• Bandwidth 

• Sampling Rate 

• Model Concatenation 

• Passivity 

• Causality 
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Data Bandwidth 

“What is the appropriate bandwidth 
for a given model?” 
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Data Bandwidth 

• Always have a realistic DC point 
• Maximum frequency dependent on application 
• Rule of thumb 

– Fmax = .35/trise 

Fmax 
trise 
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Max Frequency Study 

• Set up test circuit 

– 10Gb/s data rate 

– 10ps rise/fall time 

– 750 mm stripline model 

– Sweep Fmax from 5 to 50GHz, 10MHz step 
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Max Frequency Test 

• QuickEye analysis 

– Convolution based fast transient 

– PRBS15 pattern 

• VerifEye analysis 

– Statistical eye analysis 

• Both take advantage of LTI assumption 

– Characterize linear channel with step response 
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Max Frequency Sweep: Step Responses 

Aside from 5GHz model, results look 

similar for most, at least when zoomed out. 
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Max Frequency Sweep: Step Responses 

Looking closer 

we see a little 

more variation 

between models 
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Max Frequency, QuickEye Results, 50GHz 
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Max Frequency, QuickEye Results, 35GHz 



© 2014 ANSYS, Inc. 12 

Max Frequency, QuickEye Results, 15GHz 
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Max Frequency, QuickEye Results, 5GHz 

No eye @ 5GHz max frequency! 
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Max Frequency vs. Eye Opening 
QuickEye Results 

Eye Width vs. Max Freq
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Max Frequency, VerifEye Results 
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Max Frequency, VerifEye Results 
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Frequency Step 

“Why do I care about low frequency data 
for a SERDES application?  Doesn’t 

encoding take care of that?” 
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Frequency Step 

• Tendency to focus on bandwidth and max 
frequency 

• Remember to check if there is enough low 
frequency data in the model 
– Low frequency info required in order to reconstruct 

the propagation delay in the model 
– Remember Nyquist: 

• Ts = .5 /  Fmax 

• Fs = .5 / Tmax 
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Nyquist and Sampling 

• Traditionally taught as the time domain sample rate required 
to achieve a certain frequency domain bandwidth 

Fmax 

Ts Ts = .5 /  Fmax 
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Nyquist and Sampling 

• Given that frequency and time are duals of each other, there 
is a frequency domain sample rate requirement for 

reconstructing time delay  

Fs Tmax 
Fs = .5 / Tmax 
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Test Channel for Sampling Experiment 

• Step Source 

• 750mm transmission line s-parameters 

• Original data 0 to 50GHz, 10MHz step 

• Resample at greater frequency step sizes 
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Step Responses 

Time of Flight  

~4.25ns  ~117MHz 

3x Time of Flight 

~12.75ns  ~39MHz 
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Frequency Step Guidelines 

• When considering your frequency step size, 
determine the actual delay time you need to 
capture 

• Depending on terminations, you may need to 
account for multiple reflections 

• Essentially the settling time for the step response 
of the model is the tmax that should dictate the 
sample rate 
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Frequency Step Guidelines 

• Rule of thumb 
– 3x time of flight 

– This allows for a reflection at the far end to make an 
additional round trip to the near end and back 

Reflection! 

Reflection! 
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Model Concatenation 

“Do I have to do this for every single 
model if I need to make a single set 

of s-parameters for my whole 
channel?” 
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Model Concatenation 

• Sometimes there is the need to concatenate part 
or all of a channel into a single s-parameter 
model 

• The step size in the new model is governed by 
the overall delay you need to capture 

• This will require you to oversample each of the 
individual blocks in order to get the overall delay 
right 
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Model Concatenation 

• Max frequency still dependant on rise time 

• You can use the same 3x time of flight rule 

• Better yet, look at the step response of the circuit for 
a more accurate view of the settling time 
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Model Concatenation 

•3x t.o.f would be 30ns, ~17MHz sample rate 

•Real settling time closer to 50ns, 10MHz step needed for 

full accuracy  
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Passivity 

“My simulation just failed!  What do these 
warnings mean?” 
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Passivity 

• What is Passivity and why do I care? 
– Models must not create power/energy 

– Known source of inaccuracy in s-parameter models 

– Causes simulations to fail via non-convergence 

– Is a function of the entire matrix 

– Can check passivity using Singular Value Decomposition 
(SVD) 
• Max singular values of the s-matrix at each frequency point in the 

model must be <= 1 
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Look at Maximum Singular Value 
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Passivity 

• Is it OK if my model is “a little” non-passive? 

– Short answer: No 

– Long answer: No, but you might be lucky 
• It can be hard to say if non-passive data will stay stable long 

enough to get good results in simulation 

• It might just be a matter of stop time 

• Termination can mask non-passivity by absorbing the extra energy 
produced by the matrix 
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Non-Passive Data 
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Termination Can Absorb Extra Energy 
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Passivity 

• So what do I do? 

– Passivity Enforcement  
• Convex optimization 

• Perturbation 

– Drawbacks 
• Can result in worse fit to the data 

• Not always successful 

– For field solver models, consider tightening the error 
tolerance and re-simulating 
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Passivity Enforcement 

Non passive data, w/o passivity 

enforcement.  S-element error 2.15%. 
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Passivity Enforcement 
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Causality 

“Why do I need to care about 
causality, and how do I know if I have 

a problem?” 
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Causality 

• Several definitions 

– Causes must precede effects 

– Impulse response is 0 before t=0 

– Signals cannot travel faster than the speed of light 

 h t

 x t  y t

  0 0h t t 
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Causality  

• What can cause non-causality in S-parameter 
models? 

– Bad dielectric models in fieldsolvers 

– Loose convergence criteria in fieldsolver 

– Under sampling leading to interpolation/extrapolation 
error 

– Measurement noise 
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Causality 

• Detection of non-causality is not as simple as 
non-passivity 
– Need to use Hilbert relationship 

• For LTI structures, the real and imaginary parts are 
even/odd complements in the frequency domain 

• The Hilbert transform allows the real or imaginary parts 
to be reconstructed from each other 

• In theory this should be straightforward, but sampled 
bandlimited data add significant numerical complexity 
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Which Model is Causal? 
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Causality Checking 
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Causality Checking in State-Space 

In general, violations greater then 0.25% are usually cause for concern. 
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Causality Detection and Enforcement 

• Enforcement  
– Use causal reconstruction instead of original data 

• Issues with causality enforcement 
– If a model is non-causal it is not necessarily true to 

assume that either the real or imaginary part is 
“correct” 

– Essentially throwing away half of the s-parameter data 
– If the issue can be addressed in the fieldsolver tool, 

that will always be a more accurate option than 
enforcement 
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Non-causal Data (purple) vs. Causal Reconstruction (red) 

Enforcement succeeded, but 

results still look a little 

strange.  Best to go back and 

redo model in the field solver. 
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Going Back to the Fieldsolver 

• A few things to try: 

– Causal dielectric models, e.g. 
Djordjevic-Sarkar 

– Tighten convergence criteria 

– Minimum solved frequency 
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Causality and Passivity 

• Non-causal data can lead to non-passive 
simulation results 

– Loss of accuracy with non-causal models  

– A bad fit to non-causal data can be the cause 

– Remember that both passivity and causality are 
requirements to ensure stability 
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Conclusions 

• Need to ensure that the model data is accurate and appropriate 
for simulation 
– Bandwidth 
– Frequency Sampling 
– Stability 

• Passivity 
• Causality 

• Passivity and causality can be enforced, but this can affect 
accuracy 

• S-parameter data integrity is key for good signal integrity 
simulations 
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