Modeling, Extraction and Verification of VCSEL Model for IBIS AMI

Asian IBIS Summit Shanghai, China November 15, 2013

Zhaokai YUAN Agilent Technologies, Inc.

Outline

- Introduction
 - Optical Link Simulation
 - VCSEL(Vertical Cavity Surface Emitting Laser) simulation under IBIS-AMI
- VCSEL Modeling and Extraction
 - Thermal based modeling
 - Curve fitting algorithm
- VCSEL Verification
 - Test case including VCSEL device
 - The comparison between simulation and measured data

Introduction Optical Link System and Simulation(cont.)

Optical Link Simulation

Inside SerDes Tx & Rx

- Equalization (FFE, CTLE & DFE)
- Clock-data recovery (CDR)

Inside optical module

- Input voltage signal drives VCSEL to emit photons
- Photons propagate along optical fiber
- Photons are converted into photocurrent in PIN
- TIA converts current into output voltage

Introduction Optical Link System and Simulation(cont.)

- Extending AMI to Optical Channel
 - Treat the entire optical module as a mid-channel repeater
 - Encapsulate all optical behaviors inside the optical model
 - Extend AMI simulation to include repeater

Introduction VCSEL Basic

- VCSEL(Vertical Cavity Emitting Laser)
 - Characteristics
 - High Data Rate, up to 40GHz(state of art)
 - Low power cost(input ~ mA, output ~ mW)
 - Single-longitudinal-mode operation
 - Suitability for monolithic 2-D integration
 - Application
 - Very short range data transmission
 - Board to board data transmission

Introduction VCSEL Basic

- VCSEL modeling
 - 3-D modeling and simulation
 - From the principle of laser point of view
 - Accurate but too complicated
 - SPICE simulation
 - As VCSEL is an optical device, SPICE model may not be the initial design, a new SPICE schematic is needed
 - Hard to communicate due to IP issue
 - IBIS-AMI(Algorithmic Modeling Interface)
 - Focusing on performance only
 - Treat the VCSEL as an algorithm unit

VCSEL Modeling and Extraction VCSEL Modeling

- Modeling Principle
 - VCSEL's performance vs. Thermal behavior
 - Data flow based
 - The relationship between input current(I) and output power(Po) under the effect of temperature(T)
 - Peripheral simulation
 - Working schematic

VCSEL Modeling and Extraction VCSEL Modeling

- Rate-Equation-Based Thermal VCSEL Model
 - Transient Analysis

$$P_{o} = kS \begin{bmatrix} \frac{dS}{dt} = -\frac{S}{\tau_{p}} + \frac{\beta N}{\tau_{n}} + \frac{G_{o}(N - N_{o})S}{1 + \varepsilon S} \\ \frac{dN}{dt} = \frac{\eta_{i}(I - I_{off}(T))}{q} - \frac{N}{\tau_{n}} - \frac{G_{o}(N - N_{o})S}{1 + \varepsilon S} \\ Rate Equation \end{bmatrix} I_{off}(T) = a_{0} + a_{1}T + a_{2}T^{2} + a_{3}T^{3} + a_{4}T^{4} \begin{bmatrix} (b_{0} + b_{1}T + b_{2}T^{2})(c_{0} + c_{1}I + c_{2}I^{2}) \\ (c_{0} + c_{1}I + c_{2}I^{2} + c_{3}I^{3} + c_{4}I^{4} + c_{5}I^{5} + c_{6}I^{6}) \\ AI + B\ln(1 + \frac{I}{C}) \end{bmatrix}$$

• Stationary Analysis

$$P_{o} = \eta (I - I_{tho} - I_{off}(T))$$

$$I_{off}(T) = a_{0} + a_{1}T + a_{2}T^{2} + a_{3}T^{3} + a_{4}T^{4}$$

$$V = \begin{cases} (b_{0} + b_{1}T + b_{2}T^{2})(c_{0} + c_{1}I + c_{2}I^{2}) \\ (c_{0} + c_{1}I + c_{2}I^{2} + c_{3}I^{3} + c_{4}I^{4} + c_{5}I^{5} + c_{6}I^{6}) \\ AI + B\ln(1 + \frac{I}{C}) \end{cases}$$

VCSEL Modeling and Extraction VCSEL Extraction

- Extraction Basics
 - <u>VCSEL's performance</u> ↔ <u>Parameter values in rate equations</u>
 - Measured curves
 - LI ~ Po(I; T)
 - Measured stationary, shows the relationship between input current and the output power under different ambient temperature
 - VI ~ V(I; T)
 - Measured stationary, shows the relationship between input current and the voltage for connection, also with effect of ambient temperature
 - Frequency response ~ H(w)
 - Measured stationary, shows the frequency response, reveals the signal transmission characteristics

VCSEL Modeling and Extraction VCSEL Extraction

- Extraction Method
 - Curve Fitting Algorithm
 - LS curve fitting
 - Just solve the matrix equations
 - Suitable for simple relationship equations, such as the polynomial
 - Accurate and less time cost
 - Minimal gradient curve fitting
 - Try to find the certain set of values which can generate the smallest error
 - Suitable for more complex equations, especially with iterations
 - Need some pre-knowledge of the range of the parameters
 - More time cost for accuracy

VCSEL Modeling and Extraction VCSEL Extraction

• Schematic

- VCSEL Simulation
 - Parameter values in rate equations ↔ VCSEL's performance
 - Schematic

- Case 1 ~ device verification
 - 863-nm bottom-emitting VCSEL, 16-mm diameter
 - Extraction
 - Curves fitting result
 - LI and VI curve
 - Behavior mode is generated with file format
 - Simulation
 - Po(I) under different To
 - Response for large signal

- Case 2 ~ device verification
 - 3.1um diameter thin-oxide-aperture VCSEL
 - Extraction Result
 - Curves fitting result
 - LI(Fig 1)
 - VI(Fig 2)
 - Freq. response(Fig3)
 - Simulation
 - Po(I) simulation (Fig4)
 - Frequency response(Fig5)
 - Response for large signal(Fig6)

- Case 3 ~ optical link simulation
 - 25GHz signal transmission
 - A whole optical link: current \rightarrow optical signal \rightarrow current

Thanks

