IBIS Modeling for IO-SSO Analysis

Thunder Lay and Jack W.C. Lin IBIS Asia Summit Shanghai, China Nov. 15, 2013

cādence°

What is IO-SSO?

Missing Components in Traditional IO-SSO Analysis

Accurate On-die and Package Effects in IBIS Models

Creating IBIS Models with On-die Interconnect

Case Study – IO-SSO Analysis with IBIS Models

Summary

What is IO-SSO?

- A DDR memory interfaces is a parallel bus
 - Many signals represent a data byte/word/32-bit word/64-bit word
 - Simultaneous switching signals / outputs are referred to as SSO
 - The noise between power and ground created is referred to as simultaneous switching noise (SSN)
 - IC Designers refer to this phenomenon as IO-SSO
 - SI/PI can be verified by IO-SSO

IO-SSO Impacts Timing and Noise Margin

- Data transfers are faster and more sensitive to instability of the PDN
 - DDR runs at 2.5 V
 - DDR2 runs at 1.8 V
 - DDR3 runs at 1.5V
 - DDR4 to run at 1.2 V 1.05V

Ground bounce Peaks and Valleys must be minimized with low signal voltages

Decreasing Timing Budget ±600ps → ±300ps → ±150ps

SSN effects impact timing and noise budget

Higher Data Rate -> High Level Interactions

between signals

Increased interaction between system hardware components

Traditional IO-SSO Simulation Scenarios

- Pessimistic result when analyzed without on-die model.
- Optimistic result when analyzed with estimated on-die model.

What is IO-SSO?

Missing Components in Traditional IO-SSO Analysis

Accurate On-die and Package Effects in IBIS Models

Creating IBIS Models with On-die Interconnect

Case Study – IO-SSO Analysis with IBIS Models

Summary

cādence

Missing Components in Traditional IO-SSO Analysis

- Post-sim transistor SPICE netlist only includes limited parasitic information.
- Distributed behavior of IO's P/G impedance can't be represented.
- Pin Mapping table may not be defined accurately.
- On-die decap model is not captured in IBIS model.
- All above problems make IO-SSO simulation lose accuracy.

Asia IBIS Summit 2012

- Chip PDN model is crucial for IO-SSO analysis.
- Without Chip PDN model, artificially large power /ground noise impact the signal waveform significantly
- Chip PDN is responsible to filter high frequency noise
- On-die RC or better distributed chip PDN model can yield realistic power/ground noise analysis

BIRD proposal to add chip PDN in IBIS

- Chip PDN model can be lump RC or SPICE distributed model.
- The chip distributed model is generated by different bus group.
- The bus group is mapping to the bus group in [Pin Mapping] section.
- [Chip PDN Model] can be included in IBIS by [External Circuit] call

Controller OnDie Parasitics Package Parasitics	
Onone OnDie RC	
File Controller_pmemio_tsmc.sp Sub-circuit	Controller_TSMC_PMEMIO
Parameters Short Resistor: 0.00 Ohm PDS 0.3 Ohm PDS Capacitor: 0.50	F Edit Default
.subckt Controller_TSMC_PMEMIO_Driver_OnDie_RC	
+ in_1 in_2 in_3 in_4 in_5 in_6 in_7 in_8 in_9 in + in_11 in_12 in_14 in_16 in_18 in_20 in_23 in_25	i_10 (=) in_27
+ in_29 in_31 in_33 in_13 in_15 in_17 in_19 in_21 + in_26 in_28 in_30 in_32 in_34 out_1 out_2 out_3	in_24 out_4
 + out_5 out_6 out_7 out_8 out_9 out_10 out_11 out_ + out_14 out_16 out_18 out_20 out_23 out_25 out_27	12 out 29
+ out_31 out_33 out_13 out_15 out_17 out_19 out_21	out_24
* User-specified OnDie parasitics parameters	
+ rshort = 0.001 \$ Short Resistor + rpds = 0.3 \$ PDS Resistor	_
	cadence

What is IO-SSO?

Missing Components in Traditional IO-SSO Analysis

Accurate On-die and Package Effects in IBIS Models

Creating IBIS Models with On-die Interconnect

Case Study – IO-SSO Analysis with IBIS Models

Summary

cādence

Adding On-die Effects to the IBIS Model

Connecting Buffer, On-Die and Package Models

IBIS 5.1

- Effectively incorporates the on-die and package models into the buffer
- The package and on-die models may be of arbitrary topology to include coupling, non-ideal power deliver and other effects
- Applying IBIS 5.1 [External Circuit] sub-components is similar to sub-circuit call and connections in HSPICE
- Future ISS based solution may be coming from committee

What is IO-SSO?

Missing Components in Traditional IO-SSO Analysis

Accurate On-die and Package Effects in IBIS Models

Creating IBIS Models with On-die Interconnect

Case Study – IO-SSO Analysis with IBIS Models

Summary

Creating IBIS Models with On-die Interconnect (1/4)

- Generate chip IO model
 - LEF/DEF or GDSII data can represent physical geometry.
 - Includes Power/Ground/Signal routing with On-Die caps.
 - Define Chip stackup, circuit mapping
 - Chip IO model extraction is based on chip layout which includes metal_x to the top layers (x can be 1~N). Model builder needs to be aware what SPICE nest-list is from pre-sim or post-sim flow.
 - Generate SPICE netlist

Creating IBIS Models with On-Die Interconnect (2/4)

- [External Circuit] will be represented as IO buffer, chip IO, package.....
- Connect each [External Circuit] through [Circuit Call]

Creating IBIS Models with On-die Interconnect (3/4)

Ports under [External Circuit]

The [External Circuit] keyword allows the user to define any number of ports and port functions on a circuit.

Port name for IO Buffer

Ports A_puref A_pdref A_signal A_drive A_enable A_receive A_pcref A_gcref

Ports vcca2

.

Creating IBIS Models with On-die Interconnect (4/4)

- Define [Pin] and [Node Declarations]
 - When a [Circuit Call] keyword defines any connections that involve one or more die pads (and consequently pins), the corresponding pins on the [Pin] list must use the reserved word "CIRCUITCALL" in the third column instead of a model name.
 - [Node Declaration] provides a list of internal die nodes and/or die pads for a [Component] to make unambiguous interconnection descriptions possible

[Node Declarations] Must appea Die nodes:	r before any [Circuit Call] keyword
pu1 pd1 io1p io1 in1 en1 outin1	List of die nodes
pu2 pd2 io2p io2 in2 en2 outin2	List of die nodes
pu3 pd3 io3p io3 in3 en3 outin3	List of die nodes
[End Node Declarations]	

What is IO-SSO?

Missing Components in Traditional IO-SSO Analysis

Accurate On-die and Package Effects in IBIS Models

Creating IBIS Models with On-die Interconnect

Case Study – IO-SSO Analysis with IBIS Models

Summary

cādence

Case Study – IO-SSO Analysis with IBIS Models

- I/O transistor circuit is converted into power-aware IBIS model
- Chip is extracted by chip level extractor which include RLCK elements.
- PCB and package S-parameters are extracted and converted to broadband SPICE models.
- Only 1 group DDR data is considered for this test

Case Study – IO-SSO Analysis with IBIS Models

Case Study – IO-SSO Analysis with IBIS Models

RED: without chip PDN Green: with on-die RC Blue: with distributed broadband model

- IR drop becomes worse after including chip IO model.
- Noise level at each IO pad is different, which reveals the distributed behavior of the IO power deliver network.

What is IO-SSO?

Missing Components in Traditional IO-SSO Analysis

Accurate On-die and Package Effects in IBIS Models

Creating IBIS Models with On-die Interconnect

Case Study – IO-SSO Analysis with IBIS Models

Summary

cādence

Summary

- For tighter timing and noise budgets in LPDDR3 or DDR4, system level IO-SSO analysis is helpful for design margin assessment
- IBIS 5.1 models may include power-aware IO buffer, chip P/G/S from IOs to bump pads, and arbitrary package models
 - existing IBIS syntax is applied (using [External Circuit])
 - additional techniques using ISS within the IBIS model are being discussed in committee
- The approach described allows chip vendors to deliver more complete IBIS models to their customers to enable faster and more accurate product design verification