

DDRn Interface Signoff Analysis with Distributed Chip IO Interconnect Model

Steven Guo Spreadtrum Zuli Qin Zhangmin Zhong Cadence

IBIS Asia Summit Shanghai,China Nov. 15, 2013 上海 = 北京 = 深圳 = 天津 = 成都 = 圣迭戈 = 韩国 = 印度 = 台北 Shanghai = Beijing = Shenzhen = Tianjin = Chengdu = San Diego = Korea = India = Taipei

Agenda

Chip IO Interconnect Model Extraction and Analysis

Case Study – DDR SSO and Chip IO Power Decap

Summary

Simplified View of a Smartphone Board

4Gb eMMC +8Gb LPDDR2 Memory eMCP (LPDDR2+eMMC) 11.5x13x1.0mm3 162b FBGA 0.5mm pitch 12x12 PoP + eMMC _{only} 11.5x13x1.0mm3 153b FBGA 0.5mm pitch

Chip IO interconnection Structure

DDRn System Interconnection Topology

Uncertainties Vs Timing Margin

Transmitter	Contributions	Interconnection Contributions	Receiver Contributions
DDL (Data Delay Line) Granularity and bit offset (BDL and LCDL) (Static)		Signal Length Mismatches (On-chip interconnection M1 to Bump , RDL Routing , Package Substrate and PCB layout Skew) (Static)	Input Rise /Fall Slew Factor (Static)
Register Mismatch within the PHY (Static)		Crosstalk (Pushout/Pullin from nearby aggressor signals and serpentine routing) (Dynamic)	DDRn Data Set Up and Hold specifications (tDS, tDH) (Static)
DLL Jitter including Clock So	urce Jitter (Dynamic)	Reflections,Inter-Symbol Interference (ISI) (Impedance discontinuities, topology,Ioading) (Dynamic)	Setup and Hold Slew rate Derating (Static)
DLL Phase Error (Dynamic)		High frequency losses (Dielectric and Conductor losses) (Dynamic)	
PHY Skew between DQS/DQS# and DQ signals (Static)		Dielectric mismatches between layers (Dynamic)	
Process Variation Effects (St	atic)		
IO Output Rise Fall Delay Mi	smatch (Static)		
SSO/SSN Pushout (Effects of non-ideal power distribution network-PDN) (Dynamic)			
VT Drift (BDL and LCDL Setti	ng) (Dynamic)		

Agenda

Introduction About the Chip IO Interconnection

Case Study – DDR SSO and Chip IO Power Decap

Summary

Chip IO Interconnect Model Extraction Diagram Main [19]

Chip Model Parts

Chip IO Model Add in the IBIS Model Simulation Set Add in the IBIS Model Simulation

System Interconnection Analysis for DDRn

- Chip IO interconnect model includes signals and IO pwr/gnd
- Chip IO interconnect model is extracted by chip level extractor which include RLCK elements.
- PCB and package are extracted by EM solver and converted into broadband SPICE model.

Agenda

Introduction About the Chip IO Interconnection

Chip IO Interconnect Model Extraction and Analysis

Summary

Test vehicle of system level SI/PI analysis (DQ/DQS)

DDRn Bank0 SSO

Voltage (V)

Power aware signal integrity analysis

System level SI/PI analysis (DQ/DQS) with memory write in TD—ODT40

Power aware signal integrity analysis

System level SI/PI analysis (DQ/DQS) with memory write in TD—ODT60

Test vehicle of system level SI/PI analysis coupling among ADD/CMD/CLK and DQ/DQS

Test vehicle of system level SI/PI analysis coupling among ADD/CMD/CLK and DQ/DQS

В	us Group/Signal	Stimulus Pattern	Stimulus Offset (ns)	Transmit IO Model	Status
₽. 🔼	ADD_GP	00000000000000001100110000111100001111001100	0		
	ADDR0	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR1			se_drv15_odtoff	Not Connected
	ADDR2	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR3	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR4	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR5	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR6	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR7	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR8	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
⊡	ADDR9	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
- 2	ADDR10	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR11	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR12	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR13	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR14	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	ADDR15	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	BAO	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
- ₽	BA1	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	BA2			se_drv15_odtoff	Not Connected
	CASN	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	CKE	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	CS_N	00000000000000001100110000111100001111001100	0	se_drv15_odtoff	Signal
	dm0	010100110011000100	0	se_drv15_odtoff	Signal
	dm1	010100110011000100	0	se_drv15_odtoff	Signal
	dq0	010100110011000100	0	se_drv15_odtoff	Signal
	dq1	010100110011000100	0	se_drv15_odtoff	Signal
	dq2	010100110011000100	0	se_drv15_odtoff	Signal
	dq3	010100110011000100	0	se_drv15_odtoff	Signal
	dq4	010100110011000100	0	se_drv15_odtoff	Signal
	dq5	010100110011000100	0	se_drv15_odtoff	Signal

- Running DQ/DQS patterns first then turn on ADD/CLK.
- To measure ADD/CLK lines noise while DQ/DQS are toggling.
- To monitor ADD/CLK waveform and see if they are affected by DQ/DQS
- All DQ/DQS are in ODT-off

Coupling among bank0 and ADD/CMD (measured at U1)

Voltage (V)

Coupling among bank0 and ADD/CMD (measured at U3)

Voltage (V)

Chip Decap What-if Analysis and Optimization

- Ports for IO cells which can be impedance observations
- Ports for PSCAP/MOS cap cells which can be decaps and optimized

Power integrity analysis

Power integrity analysis --1st stage MOS caps optimization on chip

Power integrity analysis --1st stage MOS caps optimization on chip

A	G	Н	I.	J	K	L	М	N	0	Р	Q
Scheme ID	chio_io_pd	n_chio_io_p	d chio_io_po	chio_io_po	chio_io_po	chio_io_po	chio_io_po	chio_io_po	chio_io_pd	chio_io_pd	chio_io_pc
Original Scheme	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Scheme 1	26	26	26	26	26	26	26	26	26	26	26
Scheme 2	26	26	26	26	26	26	26	26	25	26	26
Scheme 3	26	26	26	26	24	26	26	26	26	26	26
Scheme 4	26	26	24	26	26	26	26	26	26	26	26
Scheme 5	26	26	26	26	23	26	26	26	26	26	26
Scheme 6	26	26	26	26	26	26	26	26	26	26	Х
Scheme 7	26	26	26	26	Х	26	26	26	26	26	26
Scheme 8	26	26	26	26	26	26	26	26	26	24	23
Scheme 9	26	26	25	26	Х	26	26	26	26	26	26
Scheme 10	26	26	25	Х	26	26	26	26	26	26	26

MOS caps with 200pF for each cell will have best impedance profile www.spreadtrum.com

Chip Decap What-if Analysis and Optimization

- This is the definition of big cell with x7 small and x1 large cells
- Total value for this big cell is ranging from 20,50,80,200PF.
- A strongly recommendation that places MOS caps as much as possible

Agenda

Introduction About the Chip IO Interconnection

Chip IO Interconnect Model Extraction and Analysis

Case Study – DDR SSO and Chip IO Power Decap

Summary

- Chip IO interconnect model should include IO Power/Ground/Signal Interconnect Model
- For high speed and low power DDR systems (LPDDR3/DDR3L/DDR4), Chip IO interconnect model is crucial for IO-SSO analysis.
- Chip IO interconnect model is one part for Chip but not in IBIS model.
- With Chip IO Interconnection model, Chip vendor can do more accurate DDRn signoff analysis to predict System electrical performace before ASIC tapeout.
- On-die RC or better distributed chip IO interconnect model can be more realistic for signal/power analysis
- New System Signoff methodology enable to avoid overdesign or under-design for on-die Decap Cell

cādence®