

Over-Clocking model validation

Asian IBIS Summit Yokohama, JAPAN November 16, 2012

Toshiba Corporation Digital Products & Services Company YASUKI TORIGOSHI

Copyright 2012, Toshiba Corporation.

- About Over-Clocking
- Validation (Remove initial delay)
- Validation (Cut tail)
- Discussion
- Expectations for IBIS

About Over-Clocking

Over-clocking creates waveform problems.

Cookbook strongly recommends we don't use overclocking.

5.4.2 V-T Table Windowing

One procedure, which is not performed by most automated IBIS creation tools, is V-T table windowing. While there is no upper limit on the time duration of V-T tables, the transient portion of the waveforms should start and finish within the time dictated by the highest frequency of the buffer (one-half of the period).

While not an IBIS requirement, users are strongly recommended to generate V-T tables that are shorter in duration than the pulse width of the highest frequency anticipated on the interface. For example, a signal that is anticipated to drive, at maximum, 100 MHz signals should have a V-T table duration no greater than 5 ns (the period of a 100 MHz signal is 10 ns; such a signal's pulse width – longest "high time" or longest "low time" – is 5 ns).

Note that this may limit the types of buffer applications appropriate for modeling under IBIS. Transistor-level models may permit switching of buffer outputs before they have completely finished a transition. However, IBIS version 4.0 assumptions do not cover this situation and buffer response for such a model may be inconsistent across EDA tools implementing IBIS.

We must create short duration waveform.

SPICE Waveform

Leading Innovation >>>

Problem : A lot of buffer can't rise/fall within 1 bit length.

Question

Question : really problem?

No remove initial delay

Evaluation circuit No.3

Checked using the following circuit.

No remove initial delay model at non overclocking

Good for buffer delay at non overclocking

No remove initial delay model at overclocking

Doesn't work with overclocking mode

Remove initial delay

Removing initial delay is effective. But How we should do?

Remove initial delay

Removing initial delay is effective. But How we should do?

Evaluation about Cutting tail

We prepared four models. All models remove initial delay.

Evaluation circuit No.1

Result : Evaluation circuit No.1 (typ)

Result : Evaluation circuit No.1 (typ) Focus to first 3bits

Leading Innovation >>>

Evaluation circuit No.4

Result : Evaluation circuit No.4 (typ)

TOSHIBA Leading Innovation >>>

Result : Evaluation circuit No.4 (typ) Focus to fast 3bits

TOSHIBA Leading Innovation >>>

Result : Evaluation circuit No.4 (typ) long view

Result : Evaluation circuit No.4 (typ) eye-pattern

TOSHIBA Leading Innovation >>>

We should improve IBIS specification.

- No-definition about shorter waveform is greatly problem.
 - \rightarrow We get differential result by simulators.
 - \rightarrow It is unhappy for users and creators.
 - \rightarrow We should improve IBIS specification about waveform.
- By some simulators, even if it carries out neither remove initial delay nor cut tail, there are the following advantages.
 - \checkmark It can express to delay of a buffer.
 - ✓ It can express to jitter of a buffer.

Suggestion

All procedure of cutting waveform should do on simulator.

- There is power supply waveform [Composite Current] in IBIS5.0.
- It is hard to create short waveform IBIS, taking time compatibility.
- Suggestion (as one solution)
 - IBIS specification change that all procedure of cutting waveform should do on simulator.
 - No-remove initial delay and no-cut tail waveform IBIS have more information than now.
 - As the result does not difference between the simulator, IBIS specifications must decide the simulation method.
 - This is useful also for creators also for users.

I want IBIS to continue to be everybody's lingua franca.

- Although the new formats such as IBIS-AMI has come out, We want IBIS to continue the environment which can do conversation.
 - A different large scale integration (LSI) maker's model can simulate in the same environment?
 - We want the viewer which can check the characteristic and a preset value.
 - Manufacturing characteristics of LSI contains really? It has not been discussed in the design value of the buffer ?
- Standards such as PCI-Express-gen3 and DDR3 is implementing a calibration value of ZQ and equalizer before communicating.
 - We hope that IBIS will automatically set the calibration value in the actual behavior.
 - We will be able to simulate more easily.

TOSHIBA Leading Innovation >>>