cādence[~]

Chip PDN Model for Power Aware Signal Integrity Analysis

Jack W.C. Lin Raymond Y. Chen Presented by: Jack W.C. Lin

Asian IBIS Summit Hsinchu, Taiwan November 13, 2012

- Traditional SSO analysis
- Chip PDN impact
- Limitation in current IBIS SSO simulation
- Chip PDN contribution to capacitance
- How to generate chip PDN model
- Case study—Using chip PDN in SSO analysis

cādence

• BIRD proposal to add chip PDN in IBIS

- PCB/Package model is extracted by EM solver with signal and power/ground information.
- IBIS without power/ground current and package [Pin]/[Package Model] model are used.
- "Artificially large" power ground fluctuations is observed in SSO analysis due to the lack of PDN model.
- "What if " RC on die model to mitigate power/ground noise till reasonable level.

Traditional SSO analysis

- 1. Driver:1.3nF/0.3 ohms ; Receiver: 1.0nF/0.3 ohms
- 2. Driver:2nF/0.3 ohms ; Receiver: None
- 3. Driver:0.5nF/0.3 ohms ; Receiver: 0.5nF/0.3 ohms

Voltage (M) <u>Waveform with different on-die decap value</u>

Z Amplitude (Ohm)

- Chip PDN will help to identify the mid-frequency resonance of the whole system
- This will enhance the power/ground noise if working frequency meet the resonance
 cādence^{**}

Chip PDN impact

 While performing SSO analysis with random bits pattern, lower frequency transition bits may meet the middlefrequency resonance and lead to larger power/ground noise and worse signal quality.

cādence

Limitation in current IBIS SSO simulation

- IBIS v5.0 is more accurate to simulate the power/ground current with pre-driver/crowbar current and I-V adjusted with Vgs. But IBIS v5.0 only can't still get reasonable power/ground noise.
- Feasible on-die RC model still play a dominant role that impacts the accuracy of the SSO analysis
- On-die RC model is not available from IBIS file.
- On-die capacitance is just estimated from IC designer by how much of MOS caps they placed around I/O cells or estimated by average power dissipation (eq.1)?
- From chip point of view, what are the factors that contribute total ondie capacitance?

C: capacitance of core
P: average power dissipation
f : clock frequency
V: power supply voltage
$$C \sim \frac{P}{V^2 f} \quad \text{Eq.1}$$

Chip PDN contribution to capacitance

- Parasitics from transistor
 - Parasitic capacitance exists between all MOSFET terminals
 - For the I/O pin, this is modeled in IBIS by C_comp
 - A new compensation capacitor is needed for the power and ground parasitics which is frequency and voltage dependency (first propose by Sigrity in DesignCon 2005)

- MOS Capacitors
 - Like n-MOS capacitors that distributed around I/O circuits

Chip PDN contribution to capacitance

Outside of the transistors

-Power/ground metal grids outside transistors that contribute capacitance.

-Except MOS caps around I/O cell, MIM caps are distributed on interposer that contributes larger capacitance in current 2.5D IC design

How to generate chip PDN model

- We need to categorize chip PDN model into 2 parts, one is transistor itself, the other is outside the transistor
- IBIS buffer model part only includes circuits and intrinsic parasitic.
- Chip PDN includes GDS layout and MOS capacitors of I/O region.
- Silicon interposer chip design becomes popular and MIMCAPs on interposer contribute sizable capacitance which need to be consider in chip PDN extraction

How to generate chip PDN model—transistor

- The IBIS Plus model proposed by Sigrity that dynamic capacitance is included while performing Y admittance extraction between power and ground.
- The equivalent circuit is extracted and added to power/ground pins through [External Model] circuit call in IBIS.

How to generate chip PDN model—outside transistor

- To extract chip PDN by I/O bus group. Same bus group share the same PDN model.
- To set power to ground ports on bumps by different bus group for model extraction
- Capacitance outside the transistor with MOS capacitors can be extracted through chip level extractor.
- The model can be lumped as simple RC value or distributed as SPICE circuit by the concern of frequency bandwidth.

Case study—Using chip PDN in SSO analysis

 Lump RC and distributed broadband model will be applied for SSO analysis with PRBS patterns

- I/O circuit is converted into IBIS/IBIS plus model
- Chip is extracted by chip level extractor which include RLCK elements.
- PCB and package are extracted by EM solver and converted into broadband SPICE.
- Only 1 group DDR data is considered for this test

Case study—Using chip PDN in SSO analysis

Voltage (V)

- On-die RC or better distributed chip PDN model can yield realistic power/ground noise analysis.
- Chip PDN is responsible to filter high frequency noise

Case study—Using chip PDN in SSO analysis

Voltage (V)

 Without Chip PDN model, artificially large power/ground noise impact the signal waveform significantly

BIRD proposal to add chip PDN in IBIS

- Chip PDN model can be lump RC or SPICE distributed model.
- The chip distributed model is generated by different bus group.
- The bus group is mapping to the bus group in [Pin Mapping] section.
- [Chip PDN Model] can be included in IBIS by [External Model] call

	Controller OnDie Parasitics Package Parasitics
	Onde RC
	File Controller_pmemio_tsmc.sp Sub-circuit Controller_TSMC_PMEMIO 🔻
	Parameters Short Resistor: 0.00 Ohm PDS 0.3 Ohm PDS Capacitor: 0.5n F Edit Default
Chip PDU Main DQ2 Buffer DQ2	.subckt Controller_TSMC_PMEMIO_Driver_OnDie_RC + in_1 in_2 in_3 in_4 in_5 in_6 in_7 in_8 in_9 in_10 + in_11 in_12 in_14 in_16 in_18 in_20 in_23 in_25 in_27 + in_29 in_31 in_33 in_13 in_15 in_17 in_19 in_21 in_24 + in_26 in_28 in_30 in_32 in_34 out_1 out_2 out_3 out_4 + out_5 out_6 out_7 out_8 out_10 out_11 out_12 + out_14 out_16 out_13 out_23 out_25 out_27 out_29 + out_31 out_33 out_15 out_17 out_19 out_21 out_24 + out_26 out_28 out_30 out_32 out_34 * User-specified OnDie parasitics parameters + rshort = 0.001 \$ Short Resistor \$ Short Resistor
	+ rpds = 0.3 \$ PDS Resistor

BIRD proposal to add chip PDN in IBIS

[Package Model] DDR3 WBGA PKG [Chip PDN Model] DDR Chip [Manufacturer] Cadence [Package] [Pin] [Pin Mapping] pulldown ref pullup ref gnd clamp ref power clamp ref ext ref **B2** GNDBUS2 NC GNDBUS2 ,PWRBUS2 PWRBUS2 **B**3 GNDBUS2 **B7** GNDBUS2 PWRBUS2 GNDBUS2 **PWRBUS2** GNDBUS2 NC **B8** NC **B9** PWRBUS2 GNDBUS2 PWRBUS2 GNDBUS2 PWRBUS2 |GNDBUS2 is VSSQ **C2** GNDBUS2 GNDBUS2 C3 PWRBUS2 PWRBUS2 | PWRBUS2 is VDDQ [Define Chip PDN Model] [Manufacturer] Cadence [Description] 3mmx3mm Flip-Chip [External Model] bus name is mapping to sub-circuit nodes Language SPICE | Corner corner_name file_name circuit_name Corner Typ chip PDN.ckt vddq pdn | Ports List of port names (in same order as in SPICE) Ports A puref A pdref

