

IBIS-AMI, industry adoption, and current challenges

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Naijen Hsuan

naijen.hsuan@ansys.com

TingHao Yeh

Tinghao.yeh@ansys.com

ANSYS Taiwan

Asian IBIS Summit Hsinchu, Taiwan November 13, 2012

ANSYS AMI Challenges Today

AMI models are compiled libraries and text files

No graphical representation

Package model standard not finalized

- User needs to manually add IC/package parasitics to channel model
- Large S-parameter issue

Each IC vendor has different parameter set

- No standards set
- Each vendor must document their models

AMI simulations depend on accurate channel modeling

Passivity and causality problem

No standard way to sweep parameters and channel corner effect

- Need to create multiple .AMI files
- EDA tools need to parse arbitrary .AMI parameters
- Six-Sigma design at one flow

ANSYS SI Challenges Today

High Speed Serial channels are pushing the current limits of simulation. Models/Simulator need to handle current challenges:

- Need to accurately handle very high data rates
- Simulate large number of bits to achieve low BER
- Non-linear ,Time Variant Systems
- TX/RX equalization and vendor specific device settings
- Specific Data patterns and coding schemes
- All types of jitter: RJ, DJ, UJ, PJ, etc.
- XTLK
- Clock Data Recovery circuits
- TX and RX may come from different vendors
- Corner and Manufacturing Variations

AMI stands for Algorithmic Modeling Interface

It allows users to specify their own transmitter and receiver models as Cinterface compiled libraries

- EDA tool supports Matlab as well as compiled DLLs
- faster signal processing algorithms
- intellectual property protection

Mainly used in convolution (fast) transient engines for channel simulation

• Designed to be used with fixed time step data

Introduced in IBIS 5.0 specs

- http://eda.org/pub/ibis/ver5.0/ver5_0.txt
- IBIS stand for "I/O Buffer Information Specification"; high-level buffer specification for circuit modeling
- In these specs the library is specified inside the IBIS wrapper and the interface is called IBIS-AMI
- In fact, AMI concept is independent of IBIS

AMI Circuit Example, time domain **ANSYS**[®]

Impulse responses

- Before and after AMI initialization
- frequency domain is also available •

Transient data

Eye diagrams

- **Bathtub plots**
- **Contour plots**
- **Bit-error-rate** •

1.00

ANSYS Comparison of Simulation Types

Method	Analysis	Advantages	Disadvantages
Traditional IBIS	Transient	Fast	Not accurate
Transistor Level	Transient	Potentially Accurate Handles Non-Linear	Very Slow No Rx Eq IP Liability Not interoperable
Fast Convolution	Quickeye	Very Fast Handles EQ Includes Bit Patterns	Not Silicon Specific LTI Assumption
Statistical	Verifeye	Very Fast Handles EQ	Not Silicon Specific No Bit Patterns LTI Assumption
IBIS-AMI	AMI	Fast Handles Vendor EQ Includes Bit Patterns Not LTI limited	Implementations vary

ANSYS AMI simulations depend on accurate channel modeling

What can we do about non-passive, non-causal models?

Bypass them

• Connect inputs to outputs directly and leave S-parameter model out of the simulation

Leave them as-is

• The source S-parameter data is non-passive, but the circuit simulation model is sufficiently passive to simulate without problems

Enforce passivity and causality

• Built-in enforcement algorithms to generate passive and causal models

ANSYS AMI simulations depend on accurate channel modeling

Channel ? passivity ? causality ?

ANSYS Corner and Manufacturing Variations

- Usually SI engineers extract only the package or the pcb due to the trade-offs between capacity and simulation time
- For high speed channels, it is important to combine the package and pcb to capture the transitions in 3D
- Merging multi-layer package and pcb in 3D can be cumbersome

ANSYS Corner effect information

Design Data Co	orner Cases Zo-Attn Parametric	Statistical T	abular Queue	e Utility: NMF	Packer							
Degrees of O 3-Level C	f Freedom [Cases] Corner [5] O 5-Level Corn	er [9] 💿 7-L	.evel Corner	r [13]				Load Settin Save Settin	ngs Default ngs Settings	Generate Tabular Cases		
Materials		7 point -	5 point -	3 point -	Nominal	3 point +	5 point +	7 point +	☑ Single Nominal			
	Dielectric Constant	0.85	0.90	0.95	1.00	1.05	1.10	1.15			High	
	Loss Tangent	0.70	0.80	0.90	1.00	1.10	1.20	1.30			Impedance	ľ
	RMS Copper Roughness	0.25	0.50	0.75	1.00	1.25	1.50	1.75		Low	┩┐ ┌┡,	J Hig
	Copper Conductivity	0.80	0.84	0.87	0.90	0.93	0.96	1.00		Attenuation	Atte	nu
Stack-up											⊢ ∳−	
	Copper Thickness	0.85	0.90	0.95	1.00	1.05	1.10	1.15				
	Dielectric Thickness	0.85	0.90	0.95	1.00	1.05	1.10	1.15				
Geometry											Low Impedance	
	Trace Width	0.85	0.90	0.95	1.00	1.05	1.10	1.15				

ANSYS Assigning Variables – Layout Approach

• Dielectric Thickness

					8		8		0	8	0		Nat	me		Туре	Material	Thickness	Etch	Rough	Solver	Lower	Upper
]	l	-	9	8	0	Name	Type	Material	Thickness	Etch	Rough	Solver	Lower	Upper	nal	COPPER	1.44mil	Γ	Γ	Γ	19.64mil	21.08mil
	V	V	۷	V	V	Y	TOP	signal	COPPER	1.44mil				19.64mil	21.08mil	al	conner	Ոՠՠ	V	V	Г	19.64mil	19.64mil
	V	۷	V	V	۷	۷	Signal	signal	copper	Omm	V	۷		19.64mil	19.64mil	ion -	coppor	Viiiii	<u> </u>	<u>j:</u>		10.0 1111	10.0 1111
Z	v V	V	V	V	V	V	UNNAMED 2	dielectric	AR	4.32mil			Γ	15.32mil	19.64mil	ectric	AIR	\$thick				15.32mil	\$thick + 15
-1	V	¥	V	V	V	V	TOP COND	sional	COPPER	1 44mil	Г	Г	Γ	15.32mil	16.76mil	าส	COPPER	1.44mil				15.32mil	16.76mil
Ø	V	V	V	V	¥	V	UNNAMED_ 4	dielectric	FR-4	4.44mil			Γ	10.88mil	15.32mil	ectric	FR-4	4.44mil			Γ	10.88mil	15.32mil
- [V	V	V	V	V	V	VCC	signal	COPPER	1.44mil				10.88mil	12.32mil	al	COPPER	1 44mil	Γ	Γ	Г	10.88mil	12 32mil
\mathbb{Z}	V	V	¥	۷	۷	V	UNNAMED_6	dielectric	FR-4	6.44mil				4.44mil	10.88mil			1.1100 A.(). 11		J		10.001111	10.00.00
- [7	¥	V	V	¥	V	GND	signal	COPPER	1.44mil				4.44mil	5.88mil	ectric	FR-4	6.44mil				4.44mil	10.88mil
\mathbb{Z}	V	V	V	V	¥	V	UNNAMED_ 8	dielectric	FR-4	4.44mil			Γ	Omil	4.44mil	nal	COPPER	1.44mil				4.44mil	5.88mil
-	V	V	¥	¥	¥	V	BOTTOM	signal	COPPER	1.44mil	Γ			Omil	1.44mil	ectric	FR-4	4.44mil			Γ	Omil	4.44mil
\mathbb{Z}	7	¥	V	¥	۷	V	UNNAMED_10	dielectric	AIR	Omil			Γ	Omil	Omil			1 (1mil	Г		Γ	Omil	1 111
	7	V	V	¥	V	V	DIEL_P1_SBALL	dielectric	air	25mil			Γ	-25mil	Omil	Idi	WFFER	1.9900	<u> </u>			UTTIII	1.44000
•	V	V	V	V	V	V	P1_SBALL	signal	perfect conductor	Omil	Γ		Γ	-25mil	-25mil	ectric	AIR	Omil				Omil	Omil
																ectric	air	25mil				-25mil	Omil
																nal	perfect conductor	Omil				-25mil	-25mil

ANSYS Assigning Variables

• Etching Factor

v v v v v v v ignal COPPER 1.44mil Image: 19.44mil 19.84mil 19.64mil 15.22mil Stink:<15 15.32mil Stink:<15 15.32mil 16.74mil Image: 19.64mil 19.84mil 19.64mil		6	6	- 88	0	0	0	Name	Туре	Material	Thickness	Etch	Rough	Solver	Lower	Upper
v v	- /	v	v	v	~	v	~	TOP	signal	COPPER	1.44mil				19.64mil	21.08mil
V V	- 🔽	v	v	~	v	V	~	Signal	signal	copper	0mm	V	V		19.64mil	19.64mil
Image: Control of the system of the syste		v	v	~	v	~	~	UNNAMED_ 2	dielectric	AIR	\$thick				15.32mil	\$thick + 15
HFSS Etch Factor VUNVAMED_4 dielectric FR-4 4.44mil Image: 10.88mil 15.32mil Layer: TOP_COND VCC signal COPPER 1.44mil Image: 10.88mil 12.32mil Thickness: 3.6576e-005 GND signal COPPER 1.44mil Image: 10.88mil 14.44mil 1.44mil V UNVAMED_8 dielectric FR-4 4.44mil Image: 10.88mil 14.44mil 1.44mil 1.44mil </td <td>- 🗸</td> <td>V</td> <td>✓</td> <td>✓</td> <td>~</td> <td>V</td> <td>✓</td> <td>TOP_COND</td> <td>signal</td> <td>COPPER</td> <td>1.44mil</td> <td>~</td> <td></td> <td></td> <td>15.32mil</td> <td>16.76mil</td>	- 🗸	V	✓	✓	~	V	✓	TOP_COND	signal	COPPER	1.44mil	~			15.32mil	16.76mil
HTS Etch Pactor VCC signal COPPER 1.44mil 10.88mil 12.32mil Layer: TOP_COND VC signal COPPER 1.44mil 10.88mil 10.44mil 10.88mil 10.44mil 10.88mil 14.44mil 10.88mil 14.44mil 10.88mil 14.44mil 10.88mil 14.44mil 10.44mil 10.44mil 10.44mil 10.44mil 10.44mil 10.44mil 10.44mil 14.44mil 10.44mil 10.44mil <td></td> <td>h Factor</td> <td>10</td> <td></td> <td>10</td> <td>X</td> <td></td> <td>UNNAMED_ 4</td> <td>dielectric</td> <td>FR-4</td> <td>4.44mil</td> <td></td> <td></td> <td></td> <td>10.88mil</td> <td>15.32mil</td>		h Factor	10		10	X		UNNAMED_ 4	dielectric	FR-4	4.44mil				10.88mil	15.32mil
Layer: TOP_COND UNNAMED_6 dielectric FR-4 6.4mil 4.4mil 10.88mil Thickness: 3.6576e-005 Signal COPPER 1.44mil 1.44mil 4.44mil 5.88mil Etch factor: 2.173913043478; MINAMED_8 dielectric FR-4 4.44mil 0mil 4.44mil 4.44mil 10.88mil Calculator UNNAMED_10 dielectric AIR 0mil 0mil 0mil 4.44mil 0mil 1.44mil 0mil 4.44mil 4.44mil 14.44mil 14	HESS EIG	n Factor	100		100		~	VCC	signal	COPPER	1.44mil				10.88mil	12.32mil
Calculator Etch factor = layer thickness / (bottom - top)/2 Top 0.0001126540 Bottom 0.0001146304 Image: Top as percent of bottom Top as percent of bottom Top oK Calculator Image: Top as percent of bottom Top oK Calculator Top as percent of bottom Top oK Calculator Image: Top as percent of bottom Top oK Calculator Top oK Calculator Top oK Calculator Image: Top of the top dimension Calculator Colourate top as percent of bottom Top oK Cancel	Lavori						~	UNNAMED_ 6	dielectric	FR-4	6.44mil				4.44mil	10.88mil
Thickness: 3.6576e-005 Etch factor: 2.173913043478; Etch factor: 2.173913043478; Calculator Signal Calculator Omil Etch factor: 1.44mil Calculator Omil Etch factor: 2.173913043478; Calculator Omil Etch factor: 2.173913043478; Calculator Omil Etch factor: Elsectric Etch factor: Lawrent thickness / (bottom - top)/2 Top 0.0001126540 Bottom 0.000146304 Image: Calculator Image: Calculator Image: Calculator Image: Calculator Image: Calculator Signal Image: Calculator S	Layer:	UP_COND					~	GND	signal	COPPER	1.44mil				4.44mil	5.88mil
Etch factor: 2.173913043478; Image: Second sec	Thickne	ss: 3.6576	e-005			_	4	UNNAMED_ 8	dielectric	FR-4	4.44mil				Omil	4.44mil
Calculator Etch factor = layer thickness / (bottom - top)/2 Top 0.0001126540 Bottom 0.000146304 • Etch top dimension • Visibility Top as percent of bottom • Wisibility Top • Management 0.000146304 • Regative Imagement • Negative Top as percent of bottom Top • K. Cancel	Etch fac	tor: 2.173	39130434	78: /	(~	BOTTOM	signal	COPPER	1.44mil				Omil	1.44mil
Calculator Etch factor = layer thickness / (bottom - top)/2 Top 0.0001126540 Bottom 0.000146304 Etch top dimension Top as percent of bottom 77 OK Cancel Visibility Attributes Visibility Attributes Visibility Visibil						,	4	UNNAMED_10	dielectric	AIR	Omil				Omil	Omil
Calculator Etch factor = layer thickness / (bottom - top)/2 Top 0.0001126540 Bottom 0.000146304 Etch top dimension Top as percent of bottom 77 OK Cancel OK Cancel P1_SBALL signal perfect conductor 0mil P1_SBALL signal perfect conductor 0mil P1_SBA							4	DIEL_P1_SBALL	dielectric	air	25mil				-25mil	Omil
Calculator Etch factor = layer thickness / (bottom - top)/2 Top 0.0001126540 Bottom 0.000146304 © Etch top dimension C Etch bottom dimension Top as percent of bottom 77 OK Cancel							~	P1_SBALL	signal	perfect conductor	Omil				-25mil	-25mil
	Etc Top Botton C Top 77	h factor = n Etch top dii Etch bottor as percent	layer thick 0.0001 0.0001 mension n dimensi of botton	on 0K		pp)/2		Visibility Visibility V 2 V 1 V 1 V 0 V 0 V 1	Attributes	Analysis Fich Fough Rough Solver Sol	n: 0					

ANSYS Roughness model : Huray model

dit Laye	rs - bga_	wb_fina	13												X
kup La	ayer														
splay Stacku Non-sta All laye	p layers ackup lay ers	ers	−Stackup Lam Units:	inate mo mm	de 💌										
	8	6		0	0	0	Name	Type	Material	Thickness	Etch	Bough	Solver	Lower	Unner
		- -		~	~	~	TOP	signal	COPPER	1.44mil				19.64mil	21.08mil
~	~		~	~	~		Signal	signal	copper	0mm	~		Γ	19.64mil	19.64mil
~	~	~	~		~	~	UNNAMED 2	dielectric	AIR	\$thick				15.32mil	\$thick + 15
~	~	~	~	~	~	~	TOP COND	signal	COPPER	1.44mil	~	V		15.32mil	16.76mil
~	I	~	~		~	~	UNNAMED 4	dielectric	FR-4	4.44mil				10.88mil	15.32mil
~	~	~	~	~	~	~	VCC	signal	COPPER	1.44mil				10.88mil	12.32mil
~	~	~	~	~	~	~	UNNAMED_ 6	dielectric	FR-4	6.44mil		-		4.44mil	10.88mil
~	~	~	~	~	~	~	GND	signal	COPPER	1.44mil				4.44mil	5.88mil
~	~	~	~	~	~	~	UNNAMED_ 8	dielectric	FR-4	4.44mil				Omil	4.44mil
~	~	~	~	~	~	~	воттом	signal	COPPER	1.44mil	Г			Omil	1.44mil
~	~	~	~	~	~	~	UNNAMED_10	dielectric	AIR	Omil				Omil	0mil
~	~	~	~	~	~	~	DIEL_P1_SBALL	dielectric	air	25mil				-25mil	Omil
~	~	~	~	~	~	~	P1 SBALL	signal	perfect conductor	Omil				-25mil	-25mil
/er Inse Inse R	rt above ert below iemove		Edits Nam Type Mate	elected - ne: e: erial:	TOP. signe	Gro Gro Sur (Hur Nod Hall	Roughness Model isse face roughness: ay ule radius: -Huray surface ratio: Οκ	mm 5um 9	Analysis Etch Etch Rough Huray Ro	h: O					
			Thic Top	kness: bottom:	1.44mm		- B		Solver	lver	Total heig	ht: 1.170432mm	1		
											A	pply and close		Apply	Close

• Trace Width

	0	0	0	0	\bigcirc				
					\bigcirc	\bigcirc			
_					U	\bigcirc			
Plg_193 Footp	Properties: package_on_board_co	mplete - bga_wb_final3			\bigcirc				
	Name Value Type Cadence APD/Alle.	Unit Evaluated V	Description						
	Name PIg_193 LockPosition						\bigcirc		
	Net A_8_ PathWidth \$width1 Pt0 12.7,7.62	mil 2.9528mil mm 12.7mm , 7.6	_						
	Pt1 11.5824 ,7.62 Pt2 9.11016212 ,5.1477 Pt3 9.11016212 ,5.1213	mm 11.5824mm mm 9.11016212 mm 9.11016212			~ 0	\bigcirc	\bigcirc	\bigcirc	
	Pt4 8.73385096 ,5.0617.	mm 8.73385096							
		Show	Hidden		\bigcirc	\bigcirc	\bigcirc	\bigcirc	

CSV Import for Parametric Analysis

Parametric Batch Mode

SVimport.csv - Notepad	
File Edit Format View Help	
Rpad, Cpad, Ztline, PropDelay, Rout, Cout 10, .5pf, 10, .5ns, 40, 1pf 25, .75pF, 75, 1ns, 10, .5pF 50, 1pf, 50, 2ns, 90, 2pf 75, 2pf, 25, 3ns, 60, 1.5pf	<
	× :::

🏂 Tune - linearci	rcuit_transla	ated_17-Apr-2007	_08_00_18
I Real time □	Accumulate	Variation: Available	
Sim. Setups NWA1	Tune	Sweep	X Sweep
		75 -	15 - [
 Browse available Snap change Snap all varial 	variations d variable bles	Nominal:	Nominal: -
Tune	Abort	•	
Save	Revert	7 -	2.5 =
Reset	Close	₹	1

Rpad	Cpad	Ztline	PropDelay	Rout	Cout
10	.5pf	10	.5ns	40	1pf
25	.75pF	75	1ns	10	.5pF
50	1pf	50	2ns	90	2pf
75	2pf	25	3ns	60	1.5pf

17

Handle all of geometric project and tune for Prbs31 at Tool and Design of Experiments analysis

PRBS31

ANSYS Channel "V" Design for AMI solution

ANSYS Simulation Approaches :DOE way

 we showed how we can use DOE way to investigate surface responses of a channel design with hundreds parametric variations. But we still had to break down the 3D component designs to small chunks of the board or package to keep simulation times reasonable

ANSYS AMI Analysis flow

- (1) Compute impulse response of the channel (as well of aggressor impulse responses)
- Regular transient analysis
- (2) Initialize AMI libraries with the channel response
- Libraries can modify impulse responses

In a loop:

- Generate a block of transmitted bits
- Convert a list of bits into a piecewise-linear rise-fall signal
- Push the signal through the transmitter
- Convolve the signal with the channel
- Push the signal through the receiver
- Post-process the results (eye and bit-error-rate plots)

- (3) Add FFE weight parameter
- (4) Add Corner and Manufacturing Variations
- (5)Uses the final impulse response from AMI analysis to run VerifEye (statistical eye) analysis
- (6) Use DOE way to investigate surface responses of a channel design with hundreds parametric variations and find root cause with min-eye

(7) Six-Sigma Report

Today, It is not easy for SI engineer to take care AMI parameters and

high Speed Serial channels manufacturing variations. We need to

enforce passive and causal models for channel .By using channel V

design, we can do large capacity simulation, and get the best solution

for AMI Channel model.