WELCOME FROM MICHAEL MIRMAK, INTEL CORPORATION

On behalf of the IBIS Open Forum, I would like to welcome you to our third Asian IBIS Summit on Taiwan. The success of our previous two summits means that we are close to establishing a "tradition" of great events with our IBIS friends and colleagues here.

We are grateful to our generous co-sponsors ANSYS, Agilent Technologies, Cadence Design Systems, Intel Corporation and IO Methodology. Their assistance makes this event possible and we hope that you will encourage them to continue their support. Our thanks also go to our presenters and to you, the attendees, for your interest.

The IBIS Summits are only a part of the regular activities of the IBIS Open Forum. You are invited to participate in all our efforts, including through e-mail discussions and by pursuing Open Forum membership.

We hope that you enjoy the Summit and find the presentations and discussions useful. We wish you luck and success!

- Michael Mirmak Chair, IBIS Open Forum

各位 IBIS 開放論壇的与會代表, 歡迎您参加我們的第三届亞洲 IBIS 台灣峰會。前兩次峰會的成功, 這意味著我們正在建立一個"傳統", 也就是我們的 IBIS 的朋友和他的同事们在這裡的一年一度的技术讨论盛会。

我們非常感謝我們慷慨的赞助商 ANSYS,安捷倫科技,Cadence 設計系統公司, 英特爾公司和 IO Methodology (Avant)。他們的協助使得本次活動成为可能,我們 也希望他們能繼續支持以后的会议。我們還要感謝我們的演讲人和與會者的大力支 持。

IBIS 技术峰會只是 IBIS 開放論壇經常活動的一部分。我们诚邀您參與我們的一切活动,包括通過 e-mail 討論和成为開放論壇的成員。

我們希望您能享受本次會議并發現有用的發言和討論。预祝本次会议圆满。也祝你 好運和成功!

马梦宽

主席, IBIS 開放論壇

WELCOME FROM DANIEL CHANG, ANSYS

Dear Experts,

On behalf of ANSYS, we would like to welcome you to join Asian IBIS Summit Taiwan and it is our pleasure can be the primary sponsor this year. We commend and thank you for taking time from your busy schedule to join us for this seminar.

Like the expectations of most of you, this seminar will help us through information on how the new technologies of IBIS improved and updated. The materials are designed to provide accurate and authoritative information. We also would like to extend a very special thanks to distinguished faculty of speakers who are experienced with the nuances and application of the IBIS models.

After a full day of new technologies and information update, we are sure that the experience of taking part in the seminar will be enriching. We eagerly await your participation in the seminar.

Thanks and regards

Daniel Chang Regional Sales Director, ANSYS Taiwan

尊敬的各位專家,

我仅代表 ANSYS 歡迎您参加亞洲 IBIS 台灣峰會,這是我們的榮幸能成为今年 IBIS 台灣峰會的主要贊助商。我們感謝您從百忙之中抽出時間来參加本次研討會。

和你的期望一樣,本次研討會將有助於我們通過的 IBIS 来讨论如何对新的技術进行改進和更新的信息。这些咨讯将对新的設計提供準確,權威的资料。我們特別感謝各位傑出的论文演讲者并他们在 IBIS 模型應用方面详细的經驗总结和讨论。

經過一整天的新技術和新信息的讨论,我們相信,本次研討會將给我们提供豐富的 技术信息和經驗。我們熱切期待著您的參與研討會。

Daniel Chang

AGENDA AND ORDER OF THE PRESENTATIONS

(The actual agenda might be modified)

	IBIS SUMMIT MEETING AGENDA
8:15	SIGN IN - Vendor Tables Open at 8:30
9:00	<pre>Welcome - Lance Wang (Vice-Chair IBIS Open Forum, IO Methodology, USA) - Daniel Chang (ANSYS, ROC)</pre>
9:15	Electronic Interconnect Challenges
9:30	IBIS 5.1: An Overview
9:55	BREAK (Refreshments and Vendor Tables)
10:20	Using Latency Insertion Method to Handle IBIS Models 16 Ping Liu*#, Jilin Tan*##, and Jose Schutt-Aine** (*Cadence Design Systems, #PRC, ##USA and **University of Illinois, USA)
10:55	IBIS-AMI, Industry Adoption, and Current Challenges 26 Naijen Hsuan and TingHao Yeh (ANSYS, ROC)
11:25	Efficient End-to-end Simulations of 25G Optical Links
12:00	FREE BUFFET LUNCH (Hosted by Sponsors) - Vendor Tables

AGENDA AND ORDER OF THE PRESENTATIONS (Continued)

13:30	Chip PDN Model for Power Aware Signal Integrity Analysis 51 Jack W.C. Lin# and Raymond Y. Chen## (Cadence Design Systems, #ROC, ##USA)
14:00	IBIS Parser Update
14:25	<pre>IBIS Validation Method Review 69 Lance Wang (IO Methodology, USA)</pre>
14:50	BREAK (Refreshments and Vendor Tables)
15:15	The Evolution of DDR Memory and Overcoming Challenges of 77 DDR3/4 Design Steven Pytel (ANSYS, USA)
15:50	Designing DDR3 System Using Static Timing Analysis in
16:25	Concluding Items
16:30	END OF IBIS SUMMIT MEETING

151	IBIS-AMI Modified Reserved Parameters for Jitter/Noise	9-Mar-12
149.1	Usage Out Syntax Correction	17-Feb-12
148	Allowable Model_types with IBIS-AMI	6-Jan-12
146	Clarify sample interval for IBIS-AMI	9-Dec-11
143.1	Correcting the rules for AMI Close	7-Oct-11
142	Clarification of [Test Data] and [Test Load] scoping	16-Sep-11
141	[Composite Current] Clarifications	16-Sep-11
140.2	Format Corner and Range Clarification for IBIS-AMI	6-Jan-12
139.2	Reserved_Parameters Order	16-Sep-11
138	IBIS-AMI Section 6c Tables Update	16-Sep-11
137.2	AMI_parameters_in, AMI_parameters_out, msg Clarifications	16-Sep-11
136	Defining Relationships between Type and Format	16-Sep-11
135.1	Add Boolean to BNF for IBIS-AMI	16-Sep-11
134	AMI Function Return Value Clarification	24-Jun-11
133.1	Model Corner C_comp	6-Jan-12
132	Clarification of the Table Format for IBIS AMI	5-Aug-11
130	Crosstalk Clarification With Respect to AMI	24-Jun-11
127.4	IBIS-AMI Typographical Corrections	9-Dec-11
126	IBIS-AMI New Reserved Parameter AMI Version	18-Feb-11
120.1	IBIS-AMI Flow Correction	22-Apr-11
115	Clarifying Min/Typ/Max in IBIS-AMI	22-Oct-10
114.3	IBIS-AMI Definition Clarifications	10-Dec-10
113.3	Weak tie-up or tie-down resistance and voltage	19-Nov-10
112	IBIS-AMI clock times Clarification	11-Jun-10
1113	Extended Usage of External Series Components in EBDs	24-Apr-09

	and After	
The prese	entation of AMI Parameters	
Parameter: Tx_1	DCD	
Required: No		
Descriptors:		
Usage:	Info, Out	
Type:	Float, UI	
Format:	Value, Range, Corner, List, Increment, Steps	
Default:	<numeric_literal></numeric_literal>	
Description:	<string_literal></string_literal>	
Definition: Tx_I deviation of the dur assumed to be in un	DCD (Transmit Duty Cycle Distortion) tells the EDA tool the maximum ation of a transmitted pulse as a fraction of the nominal pulse width. Entries are tits of seconds when declared as Type Float.	
Usage Rules:		
Other Notes:		
Examples:		
(Tx_DCD (Usage I (Range 2e-	info)(Type Float) 12 1e-12 3e-12))	
	2012 Asian IBIS Summit	9

ANSYS AMI Challenges Today
AMI models are compiled libraries and text files No graphical representation
Package model standard not finalized User needs to manually add IC/package parasitics to channel model Large S-parameter issue
Each IC vendor has different parameter set No standards set Each vendor must document their models
AMI simulations depend on accurate channel modeling Passivity and causality problem
No standard way to sweep parameters and channel corner effect • Need to create multiple .AMI files • EDA tools need to parse arbitrary .AMI parameters • Six-Sigma design at one flow
2 © 2012 ANSYS, Inc.

ANSYS IBIS AMI
AMI stands for Algorithmic Modeling Interface
 It allows users to specify their own transmitter and receiver models as C- interface compiled libraries EDA tool supports Matlab as well as compiled DLLs faster signal processing algorithms intellectual property protection
Mainly used in convolution (fast) transient engines for channel simulation Designed to be used with fixed time step data
Introduced in IBIS 5.0 specs
<u>http://eda.org/pub/ibis/ver5.0/ver5_0.txt</u>
 IBIS stand for "I/O Buffer Information Specification"; high-level buffer specification for circuit modeling
 In these specs the library is specified inside the IBIS wrapper and the interface is called IBIS- AMI
In fact, AMI concept is independent of IBIS
4 © 2012 ANSYS, Inc.

ANSYS COM	parison of Sim	iulation Types	5
Method	Analysis	Advantages	Disadvantages
Traditional IBIS	Transient	Fast	Not accurate
Transistor Level	Transient	Potentially Accurate Handles Non-Linear	Very Slow No Rx Eq IP Liability Not interoperable
Fast Convolution	Quickeye	Very Fast Handles EQ Includes Bit Patterns	Not Silicon Specific LTI Assumption
Statistical	Verifeye	Very Fast Handles EQ	Not Silicon Specific No Bit Patterns LTI Assumption
IBIS-AMI	AMI	Fast Handles Vendor EQ Includes Bit Patterns Not LTI limited	Implementations vary

ANSYS AMI simulations depend on accurate channel modeling

What can we do about non-passive, non-causal models?

Bypass them

• Connect inputs to outputs directly and leave S-parameter model out of the simulation

Leave them as-is

• The source S-parameter data is non-passive, but the circuit simulation model is sufficiently passive to simulate without problems

Enforce passivity and causality

• Built-in enforcement algorithms to generate passive and causal models

8 © 2012 ANSYS, Inc.

п

3-Level C	Corner [5] O 5-Level Corn	ner [9] 💿 7-	Level Corne	r [13]				Save Sett	ings Settings	Cases		
laterials		7 point -	5 point -	3 point -	Nominal	3 point +	5 point +	7 point +	Single Nominal			
	Dielectric Constant	0.85	0.90	0.95	1.00	1.05	1.10	1.15			•	
	Loss Tangent	0.70	0.80	0.90	1.00	1.10	1.20	1.30			7	High Impedance
	RMS Copper Roughness	0.25	0.50	0.75	1.00	1.25	1.50	1.75			L.	- •
	Copper Conductivity	0.80	0.84	0.87	0.90	0.93	0.96	1.00		Low Attenuati	ion 🖵 🍦	Atte
tack-up												
	Copper Thickness	0.85	0.90	0.95	1.00	1.05	1.10	1.15	1			
	Dielectric Thickness	0.85	0.90	0.95	1.00	1.05	1.10	1.15				
eometry												Low
	Trace Width	0.85	0.90	0.95	1.00	1.05	1.10	1.15		(
-	Trace Width	0.85	0.90	0.95	1.00	1.05	1.10	1.15				mpean

Dielectric Thickness																						
	Γ	[6				8	0		Na	me.	[Type	Material	Thickness	Etch	Rough	Solver	Lower	Upper
	\$	ł	I	ŧ	ŧ	0 Na	e T	pe Material	Thioness	Ech	Rough	Solver	Lover	Upper	al	COPPER	1.44mil	Г	Г	Г	19.64mil	21.08mil
7	7	2	7	7	7	₹ TOP	signel	COPPER	1.44mi	0	1	[1954mi	21.08ml	al	conner	Amm	V	V	Г	19.64mil	19.64mil
1	1	1	1	7	7	🖌 Sgral	siya	cottoer	Im	I	1	ļ	199441	1854ni	octric		Struck		L.		To o min	Sthick + 1
7	V G	V D	V G	V T	V G	V UNWE	2 delec	t AR	430mi			-	1520ml	1864mi 1975-1	BUIL		JUILK	-		-	15.00mil	3011CK 7 1
V U	y G	U D	V G	V G	V G	C INNER	5008 1 data	LUMPER CD /	111-2	-	-	r.	1100-1	10254	18	WPPER	1.44mil				15.32mii	16./6mil
7	Ū	5	5	C G	C D	VIVIAL	1 USEL	IL ITTY (10000)	1.16-2	Г	Г	Г	10.0011	10.0011	ectric	FR-4	4.44mil				10.88mil	15.32mil
V	V	7	V	V	V	V INUE	syla i falar	ir RM	1.1111 [.111]	1	L	Г	1110	1020-0	al	COPPER	1.44mil				10.88mil	12.32mil
V	7	V	V	V	7	7 GO	sional	COPPER	1.4ml	Г	Г	Г	44mi	588mil	ectric	FR-4	6.44mil			Γ	4.44mil	10.88mil
7	7	7	7	7	7	VINALE	l delec	ic RH	4.44mi	1		[Ini	{4m]	Ial	COPPER	1.44mil	Г	Г	Γ	4.44mil	5.88mil
٧	7	7	7	7	7	7 BOTTOM	signel	COPPER	1.44m]	Γ	[[Ini	1.44m]	ectric	FR-4	4 44mil	Read and	Record	Г	Amil	4 44mil
7	7	7	7	7	7	VINANE	_10 delec	ic AR	înî			[Ini	Ini	al	MPPER	1 dámil	Г	Г	Г	Omil	1.44mil
7	2	2	9	Ý	Ý	R DELAS	BALL dielec	ic ai	Eni	-	-	[-Cini	Ini	antia	AID	0				0	0
۲	Y	ł	۲	۷	۷	M P1,584L	signel	perfect conductor	lni				čni	-Eni	ectric	AIK	umii			-	umii	umii
															ectric	air	25mil				-25mil	Omil
															al	perfect conductor	Omil	Γ		Γ	-25mil	-25mil

Edit	Layers	i - bga	_wb_fina	al3												25		
Stacku	p Lay	rer																
Disp	lay			Stackup)													
CI	Von-star	ckup len	wers	Units	mane mus	-0												
CA	layer	8		Onas. J.	men	-												
		*	1				0	Name	Type	Material	Thickness	Etch	Bough	Soher	Lower	Unner		
	~	2	1	~	1	1	~	TOP	signal	COPPER	1.44mil		- TOOJI.		19.64mil	21.08mil		
	-	4	4		4	-	~	Signal	signal	copper	0mm	1	4		19.64mil	19.64mil		
38	~	2	4	4	7		4	UNNAMED_ 2	dielectric	AIR	\$thick.				15.32mil	\$thick + 15		
-	2			~	-		~	LINDIAMED 4	dielectric	COPPER	1.44mil 4.44mil	~	×		15.32mil	16.76mi		
	~	1	1	V	1		v	VCC	signal	COPPER	1.44mil			- D-	10.88mil	12.32mil		
201	1	2	1	~	~	-	~	UNINAMED_ 6	dielectric	FR-4	6.44mil				4.44mil	10.88mil		
	-	~	4	~	4		1	GND	signal	COPPER	1.44mil				4.44mil	5.88mil		
20	1	4	4	4	4	1	4	UNINAMED_ 8	dielectric	FR-4	4.44mil				Omil	4.44mil		
	¥	2	4	~	V		V	BOTTOM	signal	COPPER	1.44mil	0	-		Omil	1.44mil		
35	2	M	14	V	V	14	14 14	UNNAMED_10	dielectric	AIR	Omil				Omil 25mil	Omil		
	~	1	1	~	1	2	V	P1_SBALL	signal	perfect conductor	0mil				-25mil	-25mil		
n i						C		n - poor al	- Starter									
							Surface	Roughness Moder		-								
Loye				-Edit:	selected		C Gro	isse										
	losert	about	- F	New		TOP		face roughness:	mm	Analysis								
-	bran	abore	-	retarre	10:	1.00	(Hu	ay r		Etch								
	Insert	below.		Тург	10:	signe	Noc	dule radius: 0		E	tch: 0			-				
	0.		1			COPE	Hal	Huray surface ratio:	1.9	TT Davat			200 Barris					
-	ne	move		Mane	(nel:	pun	100	nardy some company		le nough	1		-	-				
Sel	ect all		*					OK	Cancel	Hurdy H	loughness							
							_			Solver								
				Thick	kness:	1.000	-	F 0	_	St	olver							
				Тор	bottom:	neither		•										
												Total heigh	at 1.170432m	<i>m</i>	1			
												A	pply and close	10 1	oply	Close		

BIRD proposal to add chip PDN in IBIS

- Chip PDN model can be lump RC or SPICE distributed model.
- The chip distributed model is generated by different bus group.
- The bus group is mapping to the bus group in [Pin Mapping] section.
- [Chip PDN Model] can be included in IBIS by [External Model] call

	Controller OnDie Parasitics Package Parasitics	
	File Controller_pmemio_tsmc.sp Sub-circuit Controller	ntroller_TSMC_PMEMI0
	Short Resistor: 0.00 Ohm PDS 0.3 Ohm PDS Capacitor: 0.5n F	Edit Default
NUCH die Main Day	.subckt Controller_TSMC_PMEMID_Driver_OnDie_RC + in_1 in_2 in_3 in_4 in_5 in_6 in_7 in_8 in_9 in_10 + in_11 in_12 in_14 in_16 in_18 in_20 in_23 in_25 in_27 + in_29 in_31 in_33 in_13 in_15 in_17 in_19 in_21 in_24 + in_26 in_28 in_30 in_32 in_34 out_1 out_2 out_3 out_4	-
	+ out_1 < out_1 < out_2 < out_	
I		cādence"

INSY	S	DE	DRX Tech	าท	olo	ogy	Ch	alle	nges	5	
SYS DDR	3 Compliance Report	Solution Setup	4	Per-L	ane	-					
		Solution Details		AC Tit	ning (JESD79	-3E. Section 13.1					
Table of Contents	4										
Desim Summary		Description	DDD1 10 Toron DO1	Metric		Worst Actual		Worst Margin	Spec Value	Unit	Result
solution Setup		1000	Communication Communication	Turba		2123.204		19,000	12	pa	8100
w-DQ		Property	s. company conversion Designers. (vi indev	Tub/de	etal)	44 5042		10.4558	24	ps	7.455
x-Edge		ACD01est	AC150	Typ(4a	Oater	155.071		55.0713	100	pa res	PASS
sign Summary	4	Second Bin	Asta (free DOS)	1 valor	anta)	100012				pa	. 455
		DOS delay	One Contraction of the Contracti	Per-I	Q	-					
sign Details		External Report	eff.	-		1.000					
Description		Probes		Tvb(ba	se) - Timing !	letrics					
ect	byte_lane0_0912_test	700	VIDDR3SDRAM2/U27.DDR. DO0	DQ	Min [ps]	Max [ps]	Mean (ps)	StilDer [ps]	t(vorst) [ps]	Margin [ps]	Resul
p	ODT_40	DQI	VIDDR3SDRAM2/U27.DDR. DQ1)	0	153.504	592.133	394,361	74,6529	826589	78.5042	PASS
nign ID	141	D02	VIDDR3SDRAM2/U27.DDR. D02	1	176,383	594,543	392.969	74.6294	774061	101.383	PASS
esign Type	Circuit Design	DQ3	V(DDR3SDRAM2/U27/DDR_DQ3)	2	160.777	595.023	383.884	74,2443	780629	\$5.7773	PASS
Location	F/WORK_2012.09/DDR_Tool_Kit:New_UD0_set_b	DQ4	VIDDR35DRAM2/U27.DDR. DQ4)	3	197.027	591.045	390.948	74.3958	167190	122.027	PASS
Date	928201211:05:57 AM	DQS	V(DDR35DRAM2/U27.DDR. DQ5)	4	198.555	611.393	404.85	74.1993	762809	123.555	PASS
Product Version	Designer 8.0.0	DQ6	V(DDR3SDRAM2/U27.DDR. DQ6)	5	190.156	610.688	406.515	75.1155	774999	113.156	PASS
UDD Version	DDR3 Compliance Report, 1.0 (R14.5)	DQ7	VIDDR3SDRAM2/U27.DDR. DQ7)	6	184,747	614.748	403.393	76.065	791885	109.747	PAST
User	myoung	DQS	V(DDR35DRAM2/U27.DDR. DQ50P)	7	187.724	603.508	402.726	73.5539	\$12520	112.724	PAST
	_	DQ5+	V(DDR3SDRAM2/U27.DDR_DQ50N)								
Solution Setup		VDD	V(Memory_Controller2/U3.Vprobe)	Tva(ba	se) - Timing Y	letrics					
olution Details		Per-Lane		DQ	Min [ps]	Max [ps]	Mean [ps]	StilDer [ps]	t(vorst) [ps]	Margin [ps]	Resul
Decemberium			-	0	237.728	681.624	442.437	75.723	287239	137.728	PASS
New D	R1 10 Terine 8 700	AC Timing (JES	D79-3E, Section 13.1)	1	234.733	662.57	442.252	75.2777	263789	134.733	PASS
UDO CI	hower File Accord A Designed O Windows with DarDefea			2	241.428	667.318	452.396	74.2569	10530.5	141.428	PASS
Parameters		Metric	Werst Actual Wee	3	238.837	637.559	444.067	74.8498	175625	138.837	PASS
C DO Level AC	150	Tvb(base)	133.304 78.5	4	224.494	637.405	431.277	75.171	254407	124.494	PASS
ceed Bin As	e (from DOS)	Tvu(base)	2120/1 112/	5	217.788	640.737	428.897	75.2974	4904.89	117.788	PASS
DOS delay Ope		Ivo(derated)	04.3042 -10.4	6	212.071	653.348	431.936	76.9848	930706	112.071	PASS
		a validerated)	122/0/1 33.0		220.004	640.728	432.214	74.4974	100403	178.004	PAGE

Agenda	
 Key Design Challenges 	
 DDR3 Timing and SI specifications 	
 Problem Statement 	
 Piecemeal simulations do not guarantee opti 	imal design
Solution	
 Static Timing Analysis in conjunction with IB simulations 	IS
 Use-cases 	
 Step-by-step method to optimally use EDA fl 	lows
 Summary 	
	cādence [~]

Key Design Challenges: Component Selection

- Memory-Buffers
 Trade-off between read-write cycles
- Controller Driver strength
 - Trade-off between read-write cycles
- Connector
 - Insertion loss
- Strobe/Clock differential buffers
 - Should satisfy tDVac and overshoot/undershoot area requirements

Key Design Challenges: Layout Constraints

- Trace-lengths
 - Relational Propagation-delays Data-Strobe for balanced setup/hold
 - Relational Propagation-delays Address-Clock for balance setup/hold
 - Relational Propagation-delays Strobe-Clock for successful write-leveling

cādence

cādence

- Topology schedules
 - Point to Point for Data
 - FlyBy for Address
- Trace Impedance
 - Example: Lead-in section (45 ohm) to Load-in section (60 ohm) through neck-down (~5 to 10 mm) for clock
 - Percentage variation that can be tolerated
- Differential matching (CLK, STROBE)
 - Maximum unparallel length

Problem Statement: Timing Closure across read/write/address

- Timing-Closure is time-consuming as there are too many constraints to be met
 - Etch delays needed for timing-closure during Read cycle may not work during Write cycle.
 - It is not enough to get just positive Setup/Hold margins; optimal design needs setup and hold margins that equally distributed.
- Requirement of relative delays between Data (Strobe) vs Address (Clock) brings additional challenge.
- It is also important to budget for signal and interconnect jitters on various signals.
 - What may look to be meeting the constraint is likely to fail due to jitter causing uncertainty in the signal.

cādence

- Timing-checks are done using hand-calculations at times and then the focus is to do post-layout verification using SI simulations to ensure correctness.
- Limitations:
 - Goal is to just meet constraints as against optimal design with enough margins on all constraints.
 - Manual timing-budget calculations are time-consuming and inefficient
 - No way to include SI effects into timing-calculations

- Limitations:
 - Use of real-time simulations to do exhaustive timing-verification is too time-consuming and difficult.
 - It is very difficult to manage optimal parameter selection across constraints spread across read/write and address cycles.

cādence

Solution: Timing analysis feeds SI simulations

- · Results of STA feed into SI simulations.
 - Estimated etch-delays (flight-time) of data, strobe, address, clock map to interconnect flight-times
 - Estimated jitter becomes constraint for cross-talk (interconnect and data-dependent)
- · SI Simulations with IBIS buffers
 - Building on interconnect details (vias, trace-lengths, stack-up) keeping the flight-time constraint from STA
 - Improving on interconnect topologies to meet SI constraints and better centering of strobe w.r.t data

cādence

cādence

Solution: SI simulations that feedback STA

- Feed-back updated flight-times (switch-delays), worst-jitter and slew-rates from real-time SI simulations to timing-models to close timing-constraints.
- Generation of layout constraints from interconnect topologies
 - Routing the board based on layout constraints
- Post-route SI simulations followed by timing-closure.

Setting up Layout constraints depending on SI exploration							
 Propagation Delays 	Max Parallel Viring User-Defined Signal Integrity Usage Switch-Settle Prop Delay Impedance Rel Prop Delay Diff Pair Differential Values Differential Values Differential Values Differential Values Differential Values						
 Impedance Relative Propagation delays 	Primary Gap: 6.00 MIL Line Width: 5.00 MIL Neck Gap: 4.00 MIL Neck Width: 0.10 MIL Coupled Tolerance (+): 0.10 MIL Coupled Tolerance (-): 0.10 MIL Minimum Line Spacing: 11.81 MIL Gather Control: Include ▼ Max Uncoupled Length: 400.00 MIL Static Phase Tol: 100.00 MIL Type: Length ▼ Phase Max Length: Type:						
Max Parallel	OK Annix Cancel Hein						

