

Using Latency Insertion Method to Handle IBIS models

Ping Liu, Jilin Tan Cadence Design Systems

Presented by: Ping Liu

José E. Schutt-Ainé University of Illinois at Urbana-Champaign

Asian IBIS Summit Shanghai, China November 9, 2012

A simple non-linear Circuit

How to solve I_D and V_d ?

Solve transcendental equations

$$I_d = 1 p A \cdot \left[\exp\left(40 \cdot V_d\right) - 1 \right]$$

$$5 = V_d + 2 \cdot I_d$$

Using Newton-Raphson Method

$$X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}$$

Newton-Raphson iterative process begins with an initial guess and terminates when the difference between successive guesses falls to zero.

cādence

Newton-Raphson Method- Graphical Interpretation

Convergent

Divergent

Limitations*

- IBIS data can be unpredictable
- Transient response requires solution of nonlinear system
- Most simulators use Newton-Raphson (NR) technique combined with modified nodal analysis(MNA)
- NR may not converge
- NR may slow down simulation
 - * J. E. Schutt-Ainé, "IBIS modeling using Latency Insertion Method," European IBIS summit, Italy, May16, 2012.

cādence[°]

Why LIM? *

- LIM does not iterate on nonlinear problems
- There is no convergence issue
- MNA has super-linear numerical complexity
- LIM has linear numerical complexity
- LIM uses no matrix formulation
- LIM has no matrix ill-conditioning problems
- LIM is much faster than MNA for large circuits
 - * J. E. Schutt-Ainé, "IBIS modeling using Latency Insertion Method," European IBIS summit, Italy, may16, 2012.

cādence[~]

Latency Insertion Method**

- LIM is an efficient time-domain simulator for a large-scaled network
- Uses "leapfrog" scheme to solve node voltages and branch currents

Nodes must have a shunt capacitor

Branches must have an inductor

** J. E. Schutt-Ainé, "Latency Insertion Method for the Fast Transient Simulation of Large Networks," IEEE Trans. Circuit Syst., vol. 48, pp. 81-89, January 2001.

LIM is fast and get faster as circuit size increases

Number of Cells	HSPICE		LIM	
	Memory	Time	Memory	Time
200×200 cells	Memory overflow	abort	102M	1156 s
100×200 cells	320M	9361s	54M	573 s
100×100 cells	108 M	2176s	28M	281 s
50×100 cells	53.3M	675s	16 M	132 s
50×50 cells	12.4M	244s	9M	47 s

cādence[™]

LIM has NO Convergence Issues

Introduce latency in diode circuit through a small L

$$V_L^{n+\frac{1}{2}} = L \cdot \frac{I_d^{n+1} - I_d^n}{\Delta t}$$

Use Leapfrog:

Explicit!

cādence[®]

- Ku/Kd extraction
- LIM-IBIS formulation
- LIM-IBIS simulation results
- Extension to Bird98
- Extension to Bird95
- Conclusion

cādence[~]

IBIS Ku/Kd Extraction

cādence[®]

IBIS Ku/Kd Extraction***

Two Equations Two Unknowns

$$-I_{die1}^{n} = K_{ur}^{n} I_{pu1}^{n} + K_{dr}^{n} I_{pd1}^{n} + I_{pc1}^{n} + I_{gc1}^{n}$$
$$-I_{die2}^{n} = K_{ur}^{n} I_{pu2}^{n} + K_{dr}^{n} I_{pd2}^{n} + I_{pc2}^{n} + I_{gc2}^{n}$$

The solution is

$$\begin{pmatrix} K_{ur}^{n} \\ K_{dr}^{n} \end{pmatrix} = \begin{pmatrix} I_{pu1}^{n} & I_{pd1}^{n} \\ I_{pu2}^{n} & I_{pd2}^{n} \end{pmatrix}^{-1} \begin{pmatrix} -I_{die1}^{n} - I_{pc1}^{n} - I_{gc1}^{n} \\ -I_{die2}^{n} - I_{pc2}^{n} - I_{gc2}^{n} \end{pmatrix}$$

The extraction of K_{uf} and K_{df} is similar.

*** Ying Wang, Han Ngee Tan "The Development of Analog SPICE Behavioral Model Based on IBIS Model", Proceedings of the Ninth Great Lakes Symposium on VLSI, GLS '99.

cādence

Transient Simulation Results*

NR and LIM give the same results

In some cases NR fails to converge

* J. E. Schutt-Ainé, "IBIS modeling using Latency Insertion Method," European IBIS summit, Italy, may16, 2012.

cādence[™]

Comparison between LIM and HSPICE

AMI_TX model in ibisamiv2nodiff.ibs file

Extension to Bird98

LIM-IBIS formulation can easily be modified to handle SSN problems

Procedures:

1. use [ISSO PU] and [ISSO PD] tables (IV table) to generate Ksso_pd and Ksso_pu vectors as follows: Ksso_pd(Vtable_pd) = Isso_pd(Vtable_pd)/Isso_pd(0) Ksso_pu(Vtable_pu) = Isso_pu(Vtable_pu)/Isso_pu(0)

2. Add Ksso_pd and Ksso_pu coefficients to the equations:
Ku(t)Ipu → Ksso_pu(Vtable_pu) *Ku(t)Ipu
Kd(t)Ipd → Ksso_pd(Vtable_pd) *Ku(t)Ipd

cādence[°]

Extension to Bird95

Procedures:

- 1. Obtain composite currents **I_composite** from IBIS 5.0 file;
- 2. Obtain **I_B** from regular IBIS simulation during pre-simulation;
- 3. Obtain the pre-driver current **lvsT**^{*}, using

 $IvsT^{*}(t) = I_composite(t) - I_B(t)$

4. Add **IvsT**^{*} (t) as a voltage controlled current source (VCCS) in parallel with IBIS B element model.

Conclusions

- LIM can be used to simulate IBIS based circuits accurately;
- LIM does not suffer from convergence problems in handling nonlinear circuits;
- LIM can be extended to handle IBIS 5.0 models;
- LIM is expected to be several orders of magnitude faster for large circuits containing a multitude of IBIS models.

cādence[®]

