

Channel Simulation Platform Creation in Matlab and IBIS-AMI Simulation Verification

Jason Liu (柳雷), Celestica Shanghai R&D Center Harrison Xue (薛飞), Celestica Shanghai R&D Center Benny Yan (宴志), Cadence Design Systems, Inc.

- As serial signal rates are rising to the 10+ Gbps, the eye is closed without equalization. Equalization (FFE, CTLE and DFE) can improve the quality of eye at receiver side.
- For a system-level high speed designer, the key to choosing an equalizer is not just to evaluate the characteristic of a lossy channel, but also to determine capability of the equalizers.
- A platform in Matlab is set up and introduced to perform channel simulation with FFE, CTLE and DFE equalization.
- The verification is done based on IBIS-AMI simulation in EDA tool, both results from EDA Tool and from the channel simulation platform are compared.

Channel Simulation Platform Flow

Celestica. Solid partners. Flexible solutions.

imebase 0.0 ns Tripger (# 20.0 ns/div Stop 0.1 16.0 kS 80 GS/8 Edge Po

FFE Modeling

3 taps emphasis is modeled as feed-forward ٠ equalization (FFE),

Where : T means the delay.

dard Faulter FIT Sela

Decision Feedback Equalization (DFE) Modeling

• 3 taps DFE modeling is shown below,

• DFE tap parameters can be optimized by the equalization algorithm;

Continuous Time Linear Equalization (CTLE) modeling

- CTLE is defined in high speed interface specifications to improve the quality of eye before DFE or at Rx side.
- It can be transformed to time domain for convolution.

$$H(s) = 2 \cdot pi \cdot 8e9 \cdot \frac{s + 2 \cdot pi \cdot 2e9 \cdot Adc}{(s + 2 \cdot pi \cdot 2e9) \cdot (s + 2 \cdot pi \cdot 8e9)}$$
 where : Adc is DC Gain

Channel Pulse Response (CPR)

- Channel Pulse Response can not only be used to evaluate channel performance, but also to determine which equalization should be used in the channel.
- An equation is created to evaluate the performance of CPR:

$$M = \frac{P_{main} - \sum_{i \neq main} abs(P_i)}{\sum_i abs(P_i)}$$

where: P_{main} is the value of main cursor, $\sum_{i \neq main} abs(P_i)$ is the sum of rest cursors.

(a) Eye without equalization

(b) Eye with Emphasis

(c) Eye with CTLE

(d) Eye with Emphasis and CTLE

Jitter modeling

- Total Jitter (TJ) can be modeled as the random jitter (RJ) convolved with deterministic jitter (DJ).
- DJ can be modeled as Dual-Dirac model.

IBIS-AMI Correlation between Matlab and EDA Tool

Pattern₽	Bits₽	Signal Rate₽	Ignore bits₽	Jitter₽
PRBS31₽	2000#	5Gbps₽	250₽	00

Table 1: EDA tool simulation condition

16 × 10⁸

Û -5 -10 -15 -20 සු -25 0 -30 -35 -40 -45 -50 2 3 7 9 Û 1 4 5 6 8 10 Freq(Hz) x 10[°]

- The figure above is the magnitude of sdd21.
- The figure at above right is the impulse correlation between EDA tool and Matlab calculated from the step response which is obtained from EDA tool.
- Table at below right is the simulation settings.

	Case↩	TX De-emphasis setting:ℯ	RX DFE setting:	
mpulse	Case 1₽	0dB (2 taps)⊬	Off₽	
se which is	Case 2₽	0dB (2 taps)⊬	[0.2 0.05 -0.02 0.01]¢	
	Case 3₽	-3.5dB (2 taps)⊬	Offe	
_	Case 4₽	-3.5dB (2 taps)⊬	[0.1-0.04 0.01 0.002]	
ation	Case 5₽	-6dB (2 taps)⊬	Offe	
Asia IRIS Sumr	Case 6₽	-6dB (2 taps)₽	[0.05 -0.01 0.003 0.001]@	
	,			

China, November 9, 2012

Simulation Correlation Results

Case No.		#1	#2	#3	#4	#5	#6
EDA tool	Vertical Eye:(mV)	0	181.8	128.3	249.9	275.1	295.5
	Horizontal Eye:(UI)	0	0.451	0.395	0.581	0.688	0.729
Matlab	Vertical Eye:(mV)	0	188	114	267	262	280
	Horizontal Eye:(UI)	0	0.478	0.393	0.556	0.707	0.721
Difference Ratio	Vertical Eye:(%)	0	3.41	12.54	6.40	5.00	5.54
	Horizontal Eye:(%)	0	5.99	0.51	1.07	2.76	1.11

Case5.sim

Casel: Tx: -6dB, Rx: DFE Off

0 0.1 0.2 0.3

0.4 0.5

UI [UNITLESS]

case6

EDA Tool Simulation results

275.114 mV 128.314 mV Volt [V] Volt [V] 687.645 mUI 394.725 mUI 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0 0.4 UI [UNITLESS] UI [UNITLESS] case1 case3 case5 Case6.sim -3dB DFE.sim Case6: Tx: -6dB. Rx: DFE On Sub-Title 0.8 0.6 0.5 0.4 295.511 mV 0.3 0.2 / 249.878 mV Volt [V] Volt [V] 0.1 0 181.818 mV -0.1 -0.2 728.829 mUI -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -1

case2

UI [UNITLESS]

Case1.sim

Casel: Tx: 0dB, Rx: DFE Off

UI [UNITLESS]

off DFE.sim

Sub-Title

Volt [V]

Volt [V]

-1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.1 -0.1 -0.3 -0.4

-0.5 -1.1

0.1 0.2 0.3 0.4

The eye is closed when both de-emphasis and DFE are off, and • the eye is much larger when the two equalization methods are appliéd.

0.5 0.6 0.7 0.8 0.9

UI [UNITLESS]

case4

0.4

0.1 0.2 0.3

0

Case3.sim

Casel: Tx: -3.5dB, Rx: DFE Off

Asia IBIS Summit, Shanghai China, November 9, 2012

13

0.6 0.7 0.8 0.9

Matlab Simulation results

• The eye is closed when both de-emphasis and DFE are off, and the eye is much larger when the two equalization methods are applied. They are identical with the EDA tool simulation results.

Conclusion

- This channel simulation platform based on Matlab is created, which can do system level high speed simulation with FFE, CTLE, DFE and jitter analysis.
- The simulation results show that channel simulation platform based on Matlab is aligned well with EDA tool, the difference is caused by the different seeds of PRBS and different rise/fall time definitions.
- The platform can not only be used to evaluate the performance of a Channel, but also to determine the capability of an equalizer when choosing the equalizer in system-level high speed design.

Thanks!