Cadence Designing DDR3 system using Static Timing Analysis in conjunction with IBIS simulations

cādence

Taranjit Kukal, Zhangmin Zhong, Heiko Dudek Cadence Design Systems, Inc.

Presented by: Zhangmin Zhong

Asian IBIS Summit Shanghai, China November 9, 2012

- Key Design Challenges
 - DDR3 Timing and SI specifications
- Problem Statement
 - Piecemeal simulations do not guarantee optimal design
- Solution
 - Static Timing Analysis in conjunction with IBIS simulations
- Use-cases
 - Step-by-step method to optimally use EDA flows
- Summary

- Key Design Challenges
 DDR3 Timing and SI specifications
- Problem Statement
 - Piecemeal simulations do not guarantee optimal design
- Solution
 - Static Timing Analysis in conjunction with IBIS simulations
- Use-cases
 - Step-by-step method to optimally use EDA flows
- Summary

Key Design Challenges: Timing Budget

- Set-up / Hold Times
 - Data write w.r.t strobe
 - Data read w.r.t strobe
 - Addressing w.r.t clock
- Strobe w.r.t clock
 - Data w.r.t Address
- Account for
 - Clock/Strobe Jitters and Interconnect Jitters
 - Slew-rates and hence derating of setup/hold

cādence[®]

Key Design Challenges: Signal Quality

- Thresholds
 - DC and AC
 - Noise-Margins
- Overshoots/Undershoots
 - Magnitude
 - Area
- tVac
 - Minimum time for signal to stay above threshold
- Eye
 - Data-Valid Window after accounting Jitter
- Slews that in-turn affect timing
 - Rise/Fall times

Key Design Challenges: Component Selection

- Memory-Buffers
 - Trade-off between read-write cycles
- Controller Driver strength
 - Trade-off between read-write cycles
- Connector
 - Insertion loss
- Strobe/Clock differential buffers
 - Should satisfy tDVac and overshoot/undershoot area requirements

cādence^{°°}

Key Design Challenges: Layout Constraints

- Trace-lengths
 - Relational Propagation-delays Data-Strobe for balanced setup/hold
 - Relational Propagation-delays Address-Clock for balance setup/hold
 - Relational Propagation-delays Strobe-Clock for successful write-leveling
- Topology schedules
 - Point to Point for Data
 - FlyBy for Address
- Trace Impedance
 - Example: Lead-in section (45 ohm) to Load-in section (60 ohm) through neck-down (~5 to 10 mm) for clock

cādence

- Percentage variation that can be tolerated
- Differential matching (CLK, STROBE)
 - Maximum unparallel length

- Key Design Challenges

 DDR3 Timing and SI specifications
- Problem Statement
 - Piecemeal simulations do not guarantee optimal design
- Solution:
 - Static Timing Analysis in conjunction with IBIS simulations
- Recommended methodology
 - Step-by-step method to optimally use EDA flows
- Summary

Problem Statement: Multiple constraints across Timing / SI

- DDR3 has several SI and Timing constraints and getting all of them to meet is a big solution-space to explore.
- Designer tries to fix a few; and in the process puts other measurements-of -interest out of specifications.

Problem Statement: Timing Closure across read/write/address

- Timing-Closure is time-consuming as there are too many constraints to be met
 - Etch delays needed for timing-closure during Read cycle may not work during Write cycle.
 - It is not enough to get just positive Setup/Hold margins; optimal design needs setup and hold margins that equally distributed.
- Requirement of relative delays between Data (Strobe) vs Address (Clock) brings additional challenge.
- It is also important to budget for signal and interconnect jitters on various signals.
 - What may look to be meeting the constraint is likely to fail due to jitter causing uncertainty in the signal.

Problem Statement: SI affects timing

- Slew-rates affect Setup/Hold time-constraints.
 - SI simulations provide slew-rates of signals that in-turn need to be considered for timing constraints. For example, hold-time constraint could be 160pS for slew-rate of 1V/ns while it could be 200pS when the signal slew-rate is 2V/ns
- Eye-shape could indicate a need for different relative etchlengths for equal setup/hold margins.
 - While Static Timing Calculations would provide one set of readings for etch-delays, the eye-shape (that could be narrow on one side) may force the designer to refine the relative delays for balanced setup/hold times.
- Stack-up variation and Cross-talk causes interconnect jitter that needs to be accounted for in the timing-checks.
 - It is important that such jitter is estimated through SI simulations and then annotated to the Timing-models for timing closure.

Problem Statement (Current approach): Ad-hoc analysis and verification (Leading to Non-optimal design)

- Timing-checks are done using hand-calculations at times and then the focus is to do post-layout verification using SI simulations to ensure correctness.
- Limitations:
 - Goal is to just meet constraints as against optimal design with enough margins on all constraints.
 - Manual timing-budget calculations are time-consuming and inefficient
 - No way to include SI effects into timing-calculations

cādence[°]

Problem Statement (Current approach) : Ad-hoc analysis and verification (Leading to Non-optimal design)

- Designers use layout rules provided by device manufacturers
- Limitation:
 - Limits flexibility. PCB designers refrain from trying variations in terms of component selection from different vendors and in trying different board dimensions and circuit configurations.
 - Over-design at times as layout guidelines are usually on the stricter side to ensure working of system

Problem Statement (Current approach) : Ad-hoc analysis and verification (Leading to Non-optimal

design)

- SI simulations are usually done as audit at verification step following a piecemeal approach
- Limitations:
 - Use of real-time simulations to do exhaustive timing-verification is too time-consuming and difficult.
 - It is very difficult to manage optimal parameter selection across constraints spread across read/write and address cycles.

- Key Design Challenges
 - DDR3 Timing and SI specifications
- Problem Statement
 - Piecemeal simulations do not guarantee optimal design
- Solution
 - Static Timing Analysis in conjunction with IBIS simulations
- Recommended methodology
 - Step-by-step method to optimally use EDA flows
- Summary

Unified SI/STA flow for DDR3

Solution: Static Timing analysis

- Static Timing exploration independent of time-expensive SI simulations can provide seed for etch estimation.
- Automatic update of constraint limits based on data-rate, slew-rate of signals, threshold-values selected for design can make easy computation.
- Automatic calculation of relative etch-delays for balanced setup/hold times while accounting for uncertainty in signals due to jitter can save multiple iterations.

cādence[™]

Solution: Timing analysis feeds SI simulations

- Results of STA feed into SI simulations.
 - Estimated etch-delays (flight-time) of data, strobe, address, clock map to interconnect flight-times
 - Estimated jitter becomes constraint for cross-talk (interconnect and data-dependent)
- SI Simulations with IBIS buffers
 - Building on interconnect details (vias, trace-lengths, stack-up) keeping the flight-time constraint from STA
 - Improving on interconnect topologies to meet SI constraints and better centering of strobe w.r.t data

Solution: SI simulations that feedback STA

- Feed-back updated flight-times (switch-delays), worst-jitter and slew-rates from real-time SI simulations to timingmodels to close timing-constraints.
- Generation of layout constraints from interconnect topologies
 - Routing the board based on layout constraints
- Post-route SI simulations followed by timing-closure.

- Key Design Challenges
 - DDR3 Timing and SI specifications
- Problem Statement
 - Piecemeal simulations do not guarantee optimal design
- Solution
 - Static Timing Analysis in conjunction with IBIS simulations
- Use-cases
 - Step-by-step method to optimally use EDA flows
- Summary

cādence[™]

Building Project

- Frequency of operation and AC threshold levels
 - Configures TD models
 - Configures custom measurements
- Address (1T / 2T)
 - Configures TD models
- New DIMMs (Or On-board) vs Existing DIMMs
 - Pre-created Topologies vs Extracted DIMM topologies
- DIMM Card Type
 - Configures topologies and ECSets

cādence[™]

Timing estimation

- Data-Strobe
 - Write
 - Read
- Address-Clock (1T or 2T)
- Decide etchdelays that can meet timing specifications

IO-model selection/Exploration

- For best noise-margins and Eye for read/write

DDR2/3 Module

- Controller Model
 - Impedance
- Memory Model
 ODT
- Connector Model
- Strobe
 - tvac, shootarea

Configuration				Slot 1		Slot 2		
Slot 1 (DIMM 1)	Slot 2 (DIMM 2)	Write To	DRAM Controller	Rank 1	Rank 2	Rank 1	Rank 2	
Dual rank	Dual rank	Slot 1	ODT off	120Ω	ODT off	ODT off	30Ω	
		Slot 2	ODT off	ODT off	30Ω	120Ω	ODT off	
Dual rank	Single rank	Slot 1	ODT off	120Ω	ODT off	20Ω	n/a	
		Slot 2	ODT off	ODT off	20Ω	120Ω ¹	n/a	
Single rank	Dual rank	Slot 1	ODT off	120Ω ¹	n/a	ODT off	20Ω	
		Slot 2	ODT off	20Ω	n/a	120Ω	ODT off	
Single rank	Single rank	Slot 1	ODT off	120Ω ¹	n/a	30Ω	n/a	
		Slot 2	ODT off	30Ω	n/a	120Ω ¹	n/a	
Dual rank	Empty	Slot 1	ODT off	40Ω	ODT off	n/a	n/a	
Empty	Dual rank	Slot 2	ODT off	n/a	n/a	40Ω	ODT off	
Single rank	Empty	Slot 1	ODT off	40Ω	n/a	n/a	n/a	
Empty	Single rank	Slot 2	ODT off	n/a	n/a	40Ω	n/a	

On-Board DDR2/3

cādence[™]

SI Solution Space for Relational Topologies - Explore data w.r.t strobe; address w.r.t clock

cādence[™]

Timing Verification after SIannotation

 Re-verify timing after import of flight delays and jitter from SI simulations

Name	Formula	Min	Nom	Max	Margin	Comment
JitterSpecifications	[]					Pick from controller data sheet
tPLL_PSERR	30	30	30	30		Phase Shift Error (On 90 degree clock output for data)
tPLL_Jitter	0	0		0		No effect on margin as the same PLL generate both write cloc
tCLOCK_SKEW_ADDER	20	20	20	20		Clock skew b/w two dedicated clock networks
InterconnectJitter	[]					Interconnect jitter on etch
vClkJit	\$PCBLib:vClkJit	20	20	20		Variable for Interconnect Clock Jitter control
vStbJit	\$PCBLib:vStbJit	70	70	70		Variable for Interconnect Strobe Jitter control
vDatJit	\$PCBLib:vDatJit	80	80	80		Variable for Interconnect Data Jitter control
InterconnectJitterClock	0	0	0	0		Interconnect jitter on clock etch
InterconnectJitterStrobe	0	0	0	0		Interconnect jitter on strobe etch
InterconnectJitterData	0	0	0	0		Interconnect jitter on data etch
PropagationDelay	[]					Estimate or take from SI [Nearest DIMM, Farthest DIMM]
Etch_Delay_ClkCtrl	\$PCBLib:Etch_Delay_ClkCtrl	545	545	545		Propagation delay b/w driver andd receiver (Clock-to-Controlle
Etch_Delay_ClkMem	\$PCBLib:Etch_Delay_ClkMem	600	600	600		Propagation delay b/w driver andd receiver (Clock-to-Memory
Etch_Delay_DQS	DriverDESIGN.CONTROLLER_STROBE.	674.4		803.9		Propagation delay b/w driver and receiver (Strobe)
Etch_Delay_DQ	DriverDESIGN.CONTROLLER_DATA 1:Re	660.6		787		Propagation delay b/w driver and receiver (Data)
Constraints	[]					Function of above
tDQSS	\$MemLib:Bin:sub:tDQSS	-630		630	<1005.1,35.4>	Strobe rising time relative to rising clock edge
tDSS	\$MemLib:Bin:sub:tDSS	500			<1125.1,>	Strobe falling edge setup time to rising clock edge
tDSH	\$MemLib:Bin:sub:tDSH	500			<180.4,>	Strobe falling edge hold time to rising clock edge
tDIPW	\$MemLib:Bin:sub:tDIPW	600			<408.6,>	Pulse width of data
tDS	\$MemLib:Bin:sub:tDS:150(der_su)	200			<163.4,><163.4,	Data Setup Time
tDH	\$MemLib:Bin:sub:tDH(der_hl)	200			<275.7,><275.7;	Data Hold Time
And an	Maml in Dantine 160 DQ-1-2.0	76				Satur Darating Maluar

cādence[°]

Setting up Layout constraints depending on SI exploration

- Impedance
- Relative Propagation delays
- Max Parallel

et Topology Lonstra	ints					
Max Parallel	Viring	User-Defined	Sign	al Inte	grity	Usage (
Switch-Settle	Prop Dela	v Impedance	Rel	Prop De	lay I	Diff Pair
Differential V	alues					
Primary Gap:		6.00 MIL				
Line Width:		5.00 MIL				
Neck Gap:		4.00 MIL				
Neck Width:		0.10 MIL				
Coupled Tole:	rance (+):	0.10 MIL				
Coupled Tolerance (-):		0.10 MIL				
Minimum Line	Spacing:	11.81 MIL				
Gather Contro	51:	Include 💌				
Max Uncouple	d Length:	400.00 MIL				
Static Phase	Tol:	100.00 HIL		Type:	Length	•
Dynamic Phase	e Tol:			Type:	Delay	•
Phase Max Le	ngth:					
		<u> </u>		1		. 1
OK	Ap;	ply _	Cancel		He	qle
					C	aden

Post-layout verification and Timing

Use-Case: Reverse-engineer a board

cādence[®]

Use-Case: Correcting IC-PHY given board

models

cādence"

- Key Design Challenges
 - DDR3 Timing and SI specifications
- Problem Statement
 - Piecemeal simulations do not guarantee optimal design
- Solution
 - Static Timing Analysis in conjunction with IBIS simulations
- Use-cases
 - Step-by-step method to optimally use EDA flows
- Summary

- DDR3 compliance requires multiple specifications to be met, covering timing and signal-integrity measurements.
- Just using SI simulations to meet all specifications and explore solution space is difficult.
- Use of tools in a piecemeal approach can validate specifications but may not result in the most optimal IC/package/board design

- Use of STA in conjunction with SI simulations in a methodical manner is needed to achieve optimal design.
- Timing models should be able to handshake data with IBIS simulations at pre-route exploration and post-route verification stages to ensure that both SI and Timing constraints are met.

cādence[®]

