WELCOME FROM MICHAEL MIRMAK, INTEL CORPORATION

On behalf of the I/O Buffer Information Specification (IBIS) Open Forum, I would like to welcome our presenters and guests to the Asian IBIS Summit in Shanghai.

Eight is truly a lucky number, as this year's event is the eighth annual IBIS Summit to be held in the People's Republic. We in the IBIS Open Forum consider ourselves very fortunate to be able to contribute to developing a stronger simulation community across the globe. We are also thankful for the opportunity to see our friends and colleagues in the People's Republic again, and for the detailed and thought-provoking technical program.

We are especially grateful to our sponsors Huawei Technologies, Agilent Technologies, ANSYS, Cadence Design Systems, Intel Corporation, IO Methodology Inc., Synopsys, Teledyne LeCroy and ZTE Corporation, for making this Summit possible.

Our thanks to you for participating and best wishes for a successful summit!

Sincerely,

马梦宽 Michael Mirmak Chair, IBIS Open Forum

我仅代表 I/O 缓冲信息规范(IBIS)开放论坛, 欢迎我们的嘉宾来参加在上海举行的亚洲 IBIS 峰会。

八是一个很幸运数字,今年是在中华人民共和国举行的第八次年度的 IBIS 峰会。 IBIS 开放论坛能够为在全球范围内发展一个更强大的仿真社区作出贡献,我们认 为自己是非常幸运的。我们也感谢有机会在中华人民共和国再次看到我们的朋友和 同仁以及他们深入的技术方案和演讲。

我们要特别感谢我们的赞助商华为技术有限公司,安捷伦科技公司,ANSYS, Cadence Design Systems, IO Methodology,英特尔公司,Synopsys公司,Teledyne LeCroy公司和中兴通讯股份有限公司,他们使本次峰会成为可能。

感谢您的参与并预祝会议圆满成功!

马梦宽

主席, IBIS 开放论坛

WELCOME FROM LI JINJUN, HUAWEI TECHNOLOGIES

Ladies and Gentleman,

On behalf of Huawei Technologies, welcome to the eighth annual Asian IBIS Summit (China). I would like to express my appreciation to IBIS Open Forum and all the sponsors for co-organizing this event.

Since 2005, IBIS Asian Summit in China has been the top-level international conference in high speed digital design society in China. I am looking forward to work with IBIS members in China, and to expand our participations in the region.

Huawei has actively involved in all IBIS society's events. We hope to resolve high speed link issues with IBIS Open Forum, EDA vendors and IC vendors. Your comments and suggestions will be deeply appreciated!

Welcome all of you to Shanghai! Hope you will enjoy all the technical discussions and sharing throughout the meeting, and have a nice journey!

Thank you! Li Jinjun Huawei Technologies

各位专家,各位来宾:

我代表华为公司, 欢迎大家来参加第8届亚洲 IBIS 技术研讨会, 衷心地感谢 IBIS 协会组织本次会议。

自从 2005 年以来, IBIS 技术研讨会已经成为了中国高速设计领域的一次盛会。我 很高兴有机会与 IBIS 协会一起促进和扩大在该领域的分享。

华为积极参与各项 IBIS 活动,希望与 IBIS 协会、EDA 软件、芯片公司一道来共同 解决许多高速链路设计上的挑战,欢迎大家会上讨论和建议。

欢迎 IBIS 专家来到上海,希望你们能够喜欢所有的技术讨论和会议分享,度过美好一天。

谢谢大家 华为公司 厉进军

AGENDA AND ORDER OF THE PRESENTATIONS

(The actual agenda might be modified)

	IBIS SUMMIT MEETING AGENDA
8:15	SIGN IN - Vendor Tables Open at 8:30
8:45	<pre>Welcome - Li, JinJun (Huawei Technologies, China) - Wang, Lance (Vice-Chair, IBIS Open Forum, IO Methodology, USA)</pre>
9:00	IBIS 5.1: An Overview
9:25	Using Latency Insertion Method to Handle IBIS Models
10:00	BREAK (Refreshments and Vendor Tables)
10:25	Channel Simulation Platform Creation in Matlab and IBIS-AMI 22 Simulation Verification Liu, Jason*; Xue, Harrison*; and Yan, Benny** (*Celestica and **Cadence Design Systems, China)
10:50	Effect Analysis of IL Resonance between 0.5~1 Normalized 30 Frequency Bandwidth Huang, ChunXiang; Dong, XianQing; and Yu, Lan (Huawei Technologies, China)
11:20	Efficient End-to-end Simulations of 25G Optical Links
12:00	FREE BUFFET LUNCH (Hosted by Sponsors)

- Vendor Tables

AGENDA AND ORDER OF THE PRESENTATIONS (Continued)

13:30 Analysis of the Impact of Crosstalk in High-Speed Serial Links . . . 52

	Sun, AnBing; Yin, ChangGang; and Jia, Wei (ZTE Corporation, China)
14:00	Verification of ICN Usability in Characterizing System Crosstalk 63 Dong, XiaoQing; and Huang, ChunXiang (Huawei Technologies, China)
14:30	Chip PDN Model for Power Aware Signal Integrity Analysis 69 Lin, Jack W.C.#; and Chen, Raymond Y.## (Cadence Design Systems, #China, ##USA)
15:00	BREAK (Refreshments and Vendor Tables)
15:25	IBIS Parser Update
15:50	IBIS Validation Method Review
16:15	The Evolution of DDR Memory and Overcoming Challenges of 95 DDR3/4 Design Pytel, Steven (ANSYS, USA)
16:50	Designing DDR3 System Using Static Timing Analysis in
17:25	Concluding Items
17:30	END OF IBIS SUMMIT MEETING

0 Mar 10
9-Mar-12
17-Feb-12
6-Jan-12
9-Dec-11
7-Oct-11
16-Sep-1
16-Sep-1
6-Jan-12
16-Sep-1
24-Jun-1
6-Jan-12
5-Aug-11
24-Jun-1
9-Dec-11
18-Feb-1
22-Apr-1
22-Oct-10
10-Dec-1
19-Nov-1
11-Jun-10
24-Apr-09

	and After							
The prese	 The presentation of AMI Parameters 							
Parameter: Tx_1	DCD							
Required: No								
Descriptors:								
Usage:	Info, Out							
Type:	Float, UI							
Format:	Value, Range, Corner, List, Increment, Steps							
Default:	<numeric_literal></numeric_literal>							
Description:	<string_literal></string_literal>							
Definition: Tx_l deviation of the dur assumed to be in un	DCD (Transmit Duty Cycle Distortion) tells the EDA tool the maximum ration of a transmitted pulse as a fraction of the nominal pulse width. Entries are hits of seconds when declared as Type Float.							
Usage Rules:								
Other Notes:								
Examples:								
(Tx_DCD (Usage I (Range 2e-	info)(Type Float) -12 1e-12 3e-12))							
	2012 Asian IBIS Summit	9						

(Case No.	#1	#2	#3	#4	#5	#6
EDA tool	Vertical Eye:(mV)	0	181.8	128.3	249.9	275.1	295.5
	Horizontal Eye:(UI)	0	0.451	0.395	0.581	0.688	0.729
Matlab	Vertical Eye:(mV)	0	188	114	267	262	280
	Horizontal Eye:(UI)	0	0.478	0.393	0.556	0.707	0.721
Difference	Vertical Eye:(%)	0	3.41	12.54	6.40	5.00	5.54
Ratio	Horizontal Eye:(%)	0	5.99	0.51	1.07	2.76	1.11
ifference Ratio	Vertical Eye:(%) Horizontal Eye:(%)	0	3.41 5.99	12.54 0.51	6.40 1.07	5.00 2.76	5.54

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

511	nulation c			n		
		IL:	18~40dB@12.5GHz		Receiver	
Core:	HSS28	Channel	XTL:	/	Core:	HSS28
Options:	NA	Data Pattern:		PRBS31	Options:	NA
Technology:	cu032	Frequency Offset:		0ppm	Technology:	cu032
Corner:	nominal	Data Rat	e:	25Gb/s	Corner:	nominal
Package:	fcpbga_21mm_100ohm	Number	of Bits:	2Mbits	Package:	fcpbga_21mm_100ohm
Chanr constr chanr sampl	nel S-parameter are ructed based on nels from sample A le B.	or		Channel S- param from sample A or Sample B	bline model	Channel S Channel S Table S Sample A Sample B
HUAWEI	TECHNOLOGIES CO., L	ſD.			10	👐 HUAWE

Conclusions

• The SerDes's maximum driving capability under sample A and sample B channels shows very different results. When running at channels of Sample A, SerDes driving capability reaches 38dB but degrades to 25dB when running at Sample B channels.

SerDes core Driving capability25Gbps, Nominal case. NO XTK						
Link	Bandwidth(GHz)	Driving Ability(dB)	Eye Mask:			
Sample A	40(Measurement)	~38	EyeH: 25mv			
Sample B	40(Measurement)	~25	EyeV: 0.15UI			

Conclusions:

- The viewpoint that IL resonance at 0.5~1 normalized frequencies has small effects on system performance is not true.
- Take care to remove IL resonance between 0.5~1 normalized frequencies when designing 25Gbps system passive link. It helps SerDes reach its maximum link driving capability from the perspective of passive link optimization.

👐 HUAWEI

15

HUAWEI TECHNOLOGIES CO., LTD.

				57
Comparisons of Simul	ation Re	sults		
Sample Channel	Eye Height	Eye Width	SNR	BER
Fanout Pattern1 without crosstalk	16.37%	0.35UI	21.9	7.2E-36
Fanout Pattern2 without crosstalk	16.35%	0.35UI	21.9	5.4E-36
Fanout Pattern3 without crosstalk	16.42%	0.35UI	21.9	6.3E-36
Fanout Pattern1 with 1 time crosstalk	15.65%	0.35UI	21.6	1.2E-33
Fanout Pattern2 with 1 time crosstalk	15.95%	0.35UI	21.8	9.8E-35
Fanout Pattern3 with 1 time crosstalk	16.22%	0.35UI	21.8	3.0E-35
Fanout Pattern1 with 2 times crosstalk	14.92%	0.35UI	21.3	2.0E-31
Fanout Pattern2 with 2 times crosstalk	15.64%	0.35UI	21.6	1.8E-33
Fanout Pattern3 with 2 times crosstalk	16.05%	0.35UI	21.8	1.0E-34
兴				© ZTE Corporation. All rights

Multi-Crosstalk ICN RMS Sum Verification

RMS sum formula of multi-crosstalk ICN: $\sigma_x = \sqrt{\sigma_{xx}^2 + \sigma_{fx}^2}$

(The underlying meaning is that the power sum algorithm in the frequency domain stand.)

For the verification method, please refer to P3. In the table below:

1. Data in the 'RT Scope Test' column represents the multi-crosstalk noise measured results (scope noise floor is peeled);

2. Data in the 'Calculated ICN' column represents the calculated ICN data of multi-crosstalk noise through RMS sum of each crosstalk's ICN value.

	RT Scope Test	Calcula	ted ICN	Del	ta		
	Test Noise	Sim1:	Sim2:	Delta	Delta		
Aggressor	Data with	Calculated	Calculated	Between	Between		
. abe l	Noise Floor	ICN under	ICN un de r	Sim1 and	Sim2 and		
	Peeled	amp/edge 1	amp/edge 2	Test Data	Test Data		
+B-> V	1.617	1.68396	1.6738	0.06696	0. 0568		
+C-> V	0.7091	0.78468	0.7683	0. 07558	0. 0592		
+C-> V	1. 761	1.8125	1.7983	0.0515	0. 0373		
C+D-> V	1.24419	1. 296	1.27686	0. 05181	0.03267		
(+D−> V	1. 90588	1.97475	1.96	0. 06887	0.05412		
\+B+C−> V	1.75827	1.8353	1.82	0. 07703	0.06173		
(+B+D−> V	1. 9467	1. 995688	1.98	0.048988	0. 0333		
3+C+D-> V	1. 2765	1.32769	1.30748	0. 05119	0. 03 098		
+C+D-> V	2. 042	2.10529	2. 086355	0. 06329	0. 044355		
\+B+C+D→ V	2. 0577	2.12494	2.1052	0.06724	0. 0475		
			Max delta	0. 07703	0. 06173		
From this ex the two is lea	periment, the 'R ss than 1%. It ca	T Scope Test' on be concluded	data and the ' I that multi-cro	Calculated I osstalk ICN I	CN' data ma RMS sum al	tches pretty well gorithm is valid.	, the delta error betwe
HIIAWEIT	FCHNOLOGIES	CO ITD				10	

BIRD proposal to add chip PDN in IBIS

- Chip PDN model can be lump RC or SPICE distributed model.
- The chip distributed model is generated by different bus group.
- The bus group is mapping to the bus group in [Pin Mapping] section.
- [Chip PDN Model] can be included in IBIS by [External Model] call

	Controller OnDie Parasitics Package Parasitics	
	Omone OnDie RC	
	File Controller_pmemio_tsmc.sp Sub-circuit Con	troller_TSMC_PMEMIO 💌
	Short Resistor: 0.00 Ohm PDS 0.3 Ohm PDS Capacitor: 0.5n F	Edit Default
	.subckt Controller_TSMC_PMEMIO_Driver_OnDie_RC	
	+ in_1 in_2 in_3 in_4 in_3 in_0 in_7 in_6 in_9 in_10 + in_11 in_12 in_14 in_16 in_18 in_20 in_23 in_25 in_27	
A Main DQ2	+ in_29 in_31 in_33 in_13 in_15 in_17 in_19 in_21 in_24 + in_26 in_28 in_30 in_32 in_34 out_1 out_2 out_3 out_4	
G Buffer	+ out_5 out_6 out_7 out_8 out_9 out_10 out_11 out_12 + out 14 out 16 out 18 out 20 out 23 out 25 out 27 out 29	
	+ out_31 out_33 out_13 out_15 out_17 out_19 out_21 out_24	
1. Sec. 1. Sec	* User-specified OnDie parasitics parameters	
	+ rshort = 0.001 \$ Short Resistor + rnds = 0.3 \$ PDS Resistor	
	(1) 100 (CSISO)	
		cādence [~]

AN <mark>S</mark>	YS [*]	DD	ORX Tech	۱n	olc	gy	Ch	alle	nges	5		
DDR3 Compliance Report		Solution Setup Per-Lane										
		Solution Details		AC Tit	AC Timing (JESD79-3E, Section 13.1)							
Table of Contents		Description		Metric	Mark Ward Wardhald Socklas Die Bark							
Design Summary		Name	DDR3 AC-Timing 8-DQ1	Tybba	e)	153.504		8.5042	75	E1	PASS	
Solution Setup Per-Lane		UDO	C:Program Filer/AnsysEM Designer8.0 Window	Tysta	e)	212.071		12.071	100	pa	PASS	
Per-DQ Per-Edge		Parameters		Tvb(de	ated)	64,5042		10.4958	15	ps	FAIL	
coge		AC DQ Level	AC150	Tva(der	ated)	155.071		5.0713	100	ps	PASS	
Design Summary	× 4	Speed Bin	Auto (from DQ5)									
		DQ5 delay	Ops	Per-L	Per-DQ							
Jesign Details		External Report	off									
Description		Probes		Tvb(ba	se) - Timing N	letrics						
Project	byte_lane0_0912_test	DQ0	V(DDRJSDRAM2/U27.DDR_DQ0)	DQ	Min [ps]	Max [ps]	Mean [ps]	SulDer [ps]	t(vorst) [ps]	Margin [ps]	Result	
Design	ODT_40	DQI	V(DDR3SDRAM2/U27.DDR_DQ1)	0	153.504	592.133	394.361	74.6529	826589	78.5042	PASS	
Design ID	141	DQ2	V(DDR3SDRAM2/U27.DDR_DQ2)	1	176.383	594.543	392.969	74.6294	774061	101.383	PASS	
Design Type	Circuit Design	DQ3	V(DDR3SDRAM2U27.DDR_DQ3)	2	160.777	595.023	383.884	74.2443	780629	\$5.7773	PASS	
Location	F/WORK_2012.09.DDR_Tool_Kit:New_UDO_set_5	DQ4	V(DDR3SDRAM2/U27.DDR_DQ4)	3	197.027	591.045	390.948	74.3958	167180	122.027	PASS	
Date	9/28/2012 11:05:57 AM	DQ5	V(DDR3SDRAM2/U27.DDR_DQ5)	4	198.555	611.393	404.85	74.1993	762809	123.555	PASS	
Product Version	Designer 8.0.0	DQ6	V(DDR3SDRAM2/U27.DDR_DQ6)	5	190.156	610.688	406.515	75.1155	774999	115.156	PASS	
UDD Version	DDR3 Compliance Report, 1.0 (R14.5)	DQ7	V(DDR3SDRAM2/U27.DDR_DQ7)	6	184.747	614.748	403.393	76.065	791885	109.747	PASS	
User	myong	DQS	V(DDR3SDRAM2/U27.DDR_DQSIP)	7	187.724	603.508	402.726	73.5539	812520	112.724	PASS	
Solution Setup	-	DQ5*	V(DDR3SDRAM2/U27.DDR_DQSIN)	-								
		VDD	V(Memory_Controller2/U3.Vprobe)	Tva(base) - Timing Metrics								
olution Details		Per-Lane		DQ	Min [ps]	Max [ps]	Mean [ps]	SulDev [ps]	t(vorst) [ps]	Margin [ps]	Result	
Description			-	0	237.728	681.624	442.437	75.723	287299	137.728	PASS	
Vane	DDR3 AC. Timier 8-D01	AC Timing (JES	D79-3E, Section 13.1)	1	234.733	662.57	442.252	75.2777	263789	134.733	PASS	
UDO	C. Proman Files AssessEM Designer 0 Windows swith UserDefine	Mark		2	241.428	667.318	452.396	74.2569	10530.5	141.428	PASS	
Parameters		Tubling	Werst Actual Wee	3	238.837	637.559	444.067	74.8498	175625	138.837	PASS	
C DQ Level	AC150	Turcheur)	10.00 78.5	4	224.494	637.405	431.277	75.171	254407	124.494	PASS	
peed Bin	Aute (from DQS)	Tub/decated)	41500	5	217.788	640.737	428.897	75.2974	4904.89	117.788	PASS	
IQS delay	Ops	Tra(dented)	-10.4	6	212.071	653.348	431.936	76.9848	990706	112.071	PASS	
External Report	eff	114(38(8)(3))	22.0	7	228.904	649.738	432.234	74,4874	189693	128.904	PASS	
Prohes		Per-DQ	4	_								

Key Design Challenges: Component Selection

- Memory-Buffers

 Trade-off between read-write cycles
- Controller Driver strength
 - Trade-off between read-write cycles
- Connector
 - Insertion loss
- Strobe/Clock differential buffers
 - Should satisfy tDVac and overshoot/undershoot area requirements

Key Design Challenges: Layout Constraints

- Trace-lengths
 - Relational Propagation-delays Data-Strobe for balanced setup/hold
 - Relational Propagation-delays Address-Clock for balance setup/hold
 - Relational Propagation-delays Strobe-Clock for successful write-leveling

cādence

cādence

- Topology schedules
 - Point to Point for Data
 - FlyBy for Address
- Trace Impedance
 - Example: Lead-in section (45 ohm) to Load-in section (60 ohm) through neck-down (~5 to 10 mm) for clock
 - Percentage variation that can be tolerated
- Differential matching (CLK, STROBE)
 - Maximum unparallel length

Problem Statement: Timing Closure across read/write/address

- Timing-Closure is time-consuming as there are too many constraints to be met
 - Etch delays needed for timing-closure during Read cycle may not work during Write cycle.
 - It is not enough to get just positive Setup/Hold margins; optimal design needs setup and hold margins that equally distributed.
- Requirement of relative delays between Data (Strobe) vs Address (Clock) brings additional challenge.
- It is also important to budget for signal and interconnect jitters on various signals.
 - What may look to be meeting the constraint is likely to fail due to jitter causing uncertainty in the signal.

cādence

- Timing-checks are done using hand-calculations at times and then the focus is to do post-layout verification using SI simulations to ensure correctness.
- Limitations:
 - Goal is to just meet constraints as against optimal design with enough margins on all constraints.
 - Manual timing-budget calculations are time-consuming and inefficient
 - No way to include SI effects into timing-calculations

- Limitations:
 - Use of real-time simulations to do exhaustive timing-verification is too time-consuming and difficult.
 - It is very difficult to manage optimal parameter selection across constraints spread across read/write and address cycles.

cādence

Solution: Timing analysis feeds SI simulations

- · Results of STA feed into SI simulations.
 - Estimated etch-delays (flight-time) of data, strobe, address, clock map to interconnect flight-times
 - Estimated jitter becomes constraint for cross-talk (interconnect and data-dependent)
- · SI Simulations with IBIS buffers
 - Building on interconnect details (vias, trace-lengths, stack-up) keeping the flight-time constraint from STA
 - Improving on interconnect topologies to meet SI constraints and better centering of strobe w.r.t data

cādence

cādence

Solution: SI simulations that feedback STA

- Feed-back updated flight-times (switch-delays), worst-jitter and slew-rates from real-time SI simulations to timing-models to close timing-constraints.
- Generation of layout constraints from interconnect topologies
 - Routing the board based on layout constraints
- Post-route SI simulations followed by timing-closure.

Setting up La depending or	yout constraints
 Propagation Delays 	Max Parallel Viring User-Defined Signal Integrity Usage Switch-Settle Prop Delay Impedance Rel Prop Delay Diff Pair Differential Values
 Impedance Relative Propagation delays 	Primary Gap: 6.00 MIL Line Width: 5.00 MIL Neck Gap: 4.00 MIL Neck Width: 0.10 MIL Coupled Tolerance (+): 0.10 MIL Coupled Tolerance (-): 0.10 MIL Minimum Line Spacing: 11.81 MIL Gather Control: Include ▼ Max Uncoupled Length: 400.00 MIL Static Phase Tol: 100.00 MIL Type: Length ▼ Phase Max Length: Type:
Max Parallel	OK Apply Cancel Help
	cādence

