

Board-only Power Deliver Prediction for Voltage regulator and Mother Board Designs

Intel Corporation Data Center Platform Application Engineering November 21, 2011

Asian IBIS Summit Taipei, Taiwan

Jiangqi He Y.L. Li Previously given at Asian IBIS Summit on November 15, 2011

1

Legal Disclaimer

Notice: This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information. Contact your local Intel sales office or your distributor to obtain the latest specification before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

This document contains information on methods under development, is subject to change without notice, and may not reflect the best practices for all participants. Check with your equipment vendor for the latest information on best practices for their equipment. Ultimate responsibility for measurement accuracy lies with those performing measurements, and their methods should be properly evaluated for accuracy.

All products, dates, and figures are preliminary for planning purposes and are subject to change without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All Rights Reserved.

Agenda

- Introduction
- Simplified SPICE Model
- Case Study and Its Application
- Validation
- Summary and Next Steps

✓ Introduction

- Simplified SPICE Model
- Case Study & Its Application
- Validation
- Summary & Next Steps

Introduction

Power delivery performance prediction typically is using full wave solvers to extract board, socket, package, and on-chip interconnect. There are many tools and approaches across industries.

However, this typical approach is usually focusing on high frequency noise, involving many piece of software and has certain limitations:

- Very high frequency oriented analysis. Typically looking for many 100s MHz or GHz range
- Extracted full wave S parameters needs macro-modeling for transient analysis
- All full wave solvers has accuracy limitation at low frequency and board analysis needs very accurate low frequency prediction
- Full wave extraction and its associated analysis do not have full explicit information on return path (GND) which is critically important for board design and optimizations.
- Typically full wave approach takes much more time to complete an analysis cycle and also needs electro-magnetics background for many uncertain scenarios during modeling/sims
- Due to its complexity, some OEM/ODM skip prediction step and go directly for testing vehicles
- Therefore, a method that involves less steps, easy to understand, good low frequency accuracy and high efficiency is highly desired!

Introduction (cont'd)

- A new methodology is called 'Simplified SPICE Model'. It allows companies to conduct simulations focused on the follows:
 - Determine # of MB layers and stack-up
 - Choose MB cap types, numbers and locations
 - Check the coupling noise due to imperfect common ground
 - Validate MB and VR performance in early development stage
 - Reduce design cycle time due to faster simulations
 - > A lot more accurate at low frequency regions.
 - Explicitly know exactly return currents
 - Least software involvement
 - An entry engineer can conduct modeling/simulations

Agenda

- Introduction
- ✓ Simplified SPICE Model
- Case Study and Its Application
- Validation
- Summary and Next Steps

A Typical Network for MB Power Delivery Analysis

Conventional PD Models : Die (on-die caps) + Package(with caps) + socket + MB + MB/Bulk caps + VR

Simplified SPICE Model for OEMs/ODMs: VRTT (Icc/Isa/Itt) + socket + MB + MB/Bulk Caps + VR

Simplified SPICE Model Workflow

Step 1. Create MB model

- Create R-network using EDA tool.
- Set up port locations for cap terminations and Vcore, Vsa, Vtt, and socket locations.

Step 2. Socket model

- Get socket pin map from supplier.
- Get R & L values of each socket pin from supplier.
- Group socket pins and scale R & L values.

Step 3. Icc, Isa, Itt models

• Get I (t) model from supplier

Step 4. VR model

• Use simple VR model from supplier.

Step 5. Connect all models together and run transient simulations

Vcore(t), Vsa(t), Vtt(t) separately

Step 6. Compare V(t) with DC and Transient Requirements

For VR design: we'll provide current models of Vcore, Vsa, and Vtt and indicate the locations of the socket pins to connect your MB. MB models will only include R from Power/Ground planes and vias.

I(t) Models of Vcc/Vsa/Vtt

Max step load size = 7A (Current pulse duration <1 μ s) Max step load slew rate di/dt ≤ 4.0 A/ μ s

Max step load size = 5 A Max step load slew rate di/dt = 20 A/ μ s

Socket Connections (Top MB Layer, 1 of 5)

MP podoc	PKG																										
MB nodes	nodes																										
VCCU pins																											
AB33	bx11y20	1		11				1 -			1	1 1	1 1	1 1	I.	1 1	1	 1.1	1 1	1	1 1	1 1					I
AA33	bx11y21	1日		#	\mp	##														—	\mp	\mp	—	Ħ	\mp	#	+
Y33	bx11y22	1 ===		#	\mp	\mp												AET	AD11	AC11 AB1	I AAII YI	<mark>n vn v</mark>	V11 U11	T11 B11	F1 +	╺┿┽╴	+
W33	bx11v23			╪╪	Ħ	=		\mathbf{N}												_	+++	\mp	_	Ħ	$\pm\pm\pm$	#	+
V33	bx11v24	1 ===		#	##	+#+																				#	_
U33	bx11v25	1 🛨		╧╧┹								AUNE AUN	A1105 A.T.0			A. ME /					#	#		Ħ	ᡱ᠋	#	+
T33	bx11v26	1 1 1		╧╧		╧╋╋					BAIS ATIS BAIS AYIS	AWIS AVIS AWIS AVIS	AUIS ATI	6 AR16	APIS ANIS APIS ANIS	AM15 A	LIS AKIS					\pm				#	+
R33	bx11v27	1 🖽		#	 						BA18 AY18	AV18 AV18	AU18 AT1	8 AR18	AP18 AN18	AM18 A	L18 AK18				++	\mp	_			#	+
BA28	bx16v1	1 🖽	╞╪╪╪	╧╪╧					┞┟┿╤		BAIS ATIS	AWIS AVIS	AUI9 ATT	a AHIa	AP19 ANIS	AMI3 A	ILIS AKIS			=	##	╪╪	—	╞╪	╧╬╧	#	+
AY28	bx16v2	1#		#	###	##						AW21 AV2 AW22 AV2	AU21 AT2	2 AR21 .	AP21 AN21 AP22 AN21	AM21 /	L21 AK21			<u> </u>	\pm	\pm	<u> </u>	Ħ	╧╋╋	#	+
AW28	bx16v3	1#		#	##	##					BA24 AY24	AW24 AV2	AU24 AT2	4 AR24	AP24 AN2	AM24 /	L24 AK24			<u> </u>	+++	##	<u> </u>	╞╪	╅╫┼	#	+
AV28	bx16v4	1 ====		<u> </u>						1	BA25 AY25	AW25 AV2	AU25 AT2	5 AR25	AP25 AN2	5 AM25 A	L25 AK25				<u> </u>	\pm	_	Ħ			+
AU28	bx16v5	1世									BA27 AY27 BA28 AY28	AW27 AV2 AW28 AV2	AU27 AT2	7 AR27 . 8 AR28 .	AP27 AN2 AP28 AN2	7 AM27 A 3 AM28 A	L27 AK27			_		++		┢╋╧	┹╁╁	#	+
AT28	bx16v6	1		+																	Ħ	\mp	=	Ħ	╤┹	#	+
AR28	bx16v7	1		╧╁┏	+++	╘													_	AB3	AA33 Y:	33 \V33 1	V33 U33	T33 R33		╧	+
AP28	bx16v8	1																						E		++-	+
AN28	bx16v9	1 🗮		╧╝┎																						<u>++</u>	+
AM28	bx16v10	1⊞				╧╋╋																				+	+
AL28	bx16y10	1₩		++																		+		\vdash		$\pm\pm$	+
AK28	bx16v12	1₩		++-		+++																++	\pm	\vdash	+++	++	+
BA27	bx17v1	1 🕀		++-																	+++	+		\square	+++	++	+
ΔΥ27	bx17y2	1 🕀	\square		\square	+++														—	+++	+	_	\square	+++	++	+
AW27	bx17y2	╡┯┯	┢╋╋			++++														—	+++	++	_	\square	\square	+	Ŧ
ΔV27	bx17y3	1 []	\square	+	₩	+++	+														++	++		\square	\square	+	Ŧ
ΔU27	bx17y5	- □□□																									Ι
ΔT27	bx17y5	-																									
ΔΡ27	bx17y0	-																									
ΔΡ27	bx17v8	-																									
ΔΝ27	bx17y0	-																									
ΔΜ27	bx17v10	-																									
ΔΙ 27	by17y10	-																									
	• • • • • • • • • • • • • • • • • • •	1																									

You may need to lump several pins as one node.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation the U. S. and other countries. Other names and brands may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2011, Intel Corporation.

AK27

bx17y12

Stackup (6 layer)

Layer Name	Plane Description	Layer Thickness (mil)	Copper Weight (oz)	Dielectric (eR)	tand (max)
	solder mask	0.50		3.8	0.022
Signal 1	SIGNAL	1.90	1.5		
	prepreg and/or Core	2.70		4.0	0.022
Plane 2	GND	1.30	1.0		
	Prepreg	4.00		4.1	0.022
Signal 3	SIGNAL	1.30	1.0		
	core	39.00		4.0	0.022
Signal 4	SIGNAL	1.30	1.0		
	Prepreg	4.00		4.1	0.022
Plane 5	GND VDD	1.30	1.0		
	prepreg and/or Core	2.70		4.0	0.022
Signal 6	SIGNAL	1.90	1.5		
	solder mask	0.50		3.8	0.022
	Total	62.40	(+8/-5)		

You may want to get MB resistivity value from MB suppliers.

Simplified SPICE Model

Simplified Multiphase VRD (P1~P4) with Socket LoadLine

Simplified MB R network include Bulk Caps & Decoupling HF Caps

Icc / Isa / Itt current SPICE Model

Sensing at CPU Socket

SPICE Model Connection Block Diagram

DC Requirements

DC Requirements (cont'd)

Dynamic or Transient Requirements

Agenda

- Introduction
- Simplified SPICE Model
- Case Study and Its Application
- Validation
- Summary & Next Steps

Case Study -

Cost/Performance Optimization of Cap number

Top caps

Bottom caps

Cost/Performance Optimization study of Cap number:

Case 1 ~ 10 uf 50 pcs / 22 uF 16 pcs / 470 uf 7 pcs Case 2 ~ 10 uf 30 pcs / 22 uF 8 pcs / 470 uf 4 pcs

Case Study – *Cost/Performance Optimization of Cap number*

If transient design target is A, both Cases 1 and 2 fail. If transient design target is B, Case 1 is fine but Case 2 fail. If transient design target is C, both Cases 1 and 2 are fine.

Agenda

- Introduction
- Simplified SPICE Model
- Case Study and Its Application

✓ Validation

Summary & Next Steps

Loading frequency = 305 Hz

Slew=163 A/uS

1st spike reading:

1.058 V vs. 1.05 V @ 115 A to 25 A 8 mV difference only \rightarrow 99.24% Accuracy

- Including more sophisticated VR model with FETs may be able to reduce Waveform Δ .
- Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.

Loading frequency = 305 Hz

Slew=163 A/uS

1st spike reading:

0.914 V vs. 0.932 V @ 25 A to 115 A **18 mV** difference only **→ 98.07% Accuracy**

- Including more sophisticated VR model with FETs may be able to reduce Waveform Δ .
- Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.

Loading frequency = 12K

Slew=163A/uS

1.052 V vs. 1.054 V @ **115** A to 25 A **2 mV** difference only \rightarrow **99.8%** Accuracy

0.914 V vs. 0.934 V @ 25 A to 115 A 20 mV difference only → 97.85% Accuracy

- Including more sophisticated VR model with FETs may be able to reduce Waveform Δ .
- Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.

Loading frequency = 275K

Slew=163 A/uS

1st spike reading:

1.064 V vs. 1.066 V @ 115 A to 25 A 2 mV difference only \rightarrow 99.8% Accuracy

0.914 V vs. 0.94 V @ 25 A to 115 A **26 mV** difference only \rightarrow **97.63%** Accuracy

- Including more sophisticated VR model with FETs may be able to reduce Waveform Δ .
- Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.

Loading frequency = 650K

Slew=163 A/uS

1st spike reading:

1.034 V vs. 1.048 V @ 115 A to 25 A 14 mV difference only \rightarrow 98.66% Accuracy

0.92 V vs. 0.93 V @ 25 A to 115 A 10 mV difference only \rightarrow 98.9% Accuracy

- Including more sophisticated VR model with FETs may be able to reduce Waveform Δ .
- Adding MB parasitic C & L should be helpful in reduction of waveform Δ as well.

Simulation Result vs. Real VRTT Test Result

1.09 V vs. 1.095 V @ 59 A to 165 A **5 mV** difference only

Simulation Result Accuracy higher then 99% * (This case used a very sophisticated VR model from VR Vender.)

Agenda

- Introduction
- Simplified SPICE Model
- Case Study & Its Application
- Methodology Validation
- ✓ Summary and Next Steps

Summary and Next Steps

Simplified SPICE model has been validated by companies

Using the collaterals, companies can

- optimize their own designs & make their own decisions before Gerber Out to achieve the best cost/performance trade-off in
 - Determine # of MB layers & stack-up
 - > Choose MB cap types, numbers & locations
- □ reduce risk of common ground noise coupling among Vcc, Vsa, Vtt, and Vddq
- validate their own designs after Gerber Out
- Next Steps
 - □ Obtain more sophisticated VR model from venders
 - □ Include thermal impact to more accurately predict Maximum Current can be carried.

