Supporting External circuit as Spice or Sparameters in conjunction with I-V/V-T tables

Kent Dramstad, Adge Hawes IBM Microelectronics

Taranjit Kukal, Feras Al-Hawari, Ambrish Varma, Terry Jernberg Cadence Design Systems, Inc.

Presented by: Charlie Shih, Cadence Design Systems, Inc. (Previously presented at Asian IBIS Summits, November 15 and 18, 2011)

Asian IBIS Summit Taipei, Taiwan November 21, 2011

- Requirement
- Current Limitations of [External Circuit]

Solution

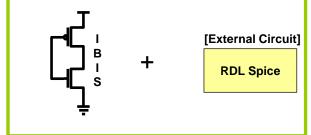
- Supporting S-parameters in [External Circuit] (BIRD144)
- Simulating [External Circuit] in conjunction with I-V/V-T tables (BIRD145)

Summary

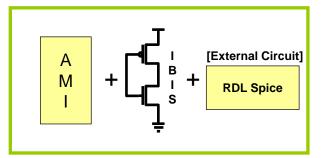
Current Limitations of [External Circuit]

Solution

- Supporting S-parameters in [External Circuit]
- Simulating [External Circuit] in conjunction with I-V/V-T tables

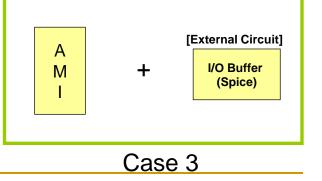

cādence[®]

- At high frequencies, we need ways over and above I-V, V-T tables and AMI to model the buffer.
 - On DIE Terminations (ODT) that vary with frequencies need to be expressed as S-parameters or RLGC Spice files
 - On DIE Re-distribution layer (RDL) parasitics become significant and vary with frequencies and hence have to be expressed as S-parameters
 - Analog portion of IO-buffer get expressed as Spice as against I-V/V-T curve; S-parameters get used to describe transfer characteristics of linear IO-buffer amplifiers.


- At high frequencies, we need ways over and above I-V, V-T tables and AMI to model the buffer.
 - Some algorithmic portion of IO-buffer model could be expressed as behavioral Spice to augment AMI code
 - Example: 'if-then-else kind of spice' to pick right sub-circuit based on parameter values/processes
 - Example: Modeling continuous filters as behavioral spice to augment digital filters in AMI code

- Various Cases that need to be covered

Case 1


Simulating RDL parasitics in conjunction with I-V/V-T tables

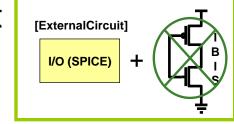
Simulating RDL parasitics in conjunction with I-V/V-T tables and AMI

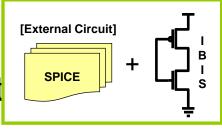
Simulating AMI with IO-buffer expressed as Spice

Current Limitations of [External Circuit]

Solution

- Supporting S-parameters in [External Circuit]
- Simulating [External Circuit] in conjunction with I-V/V-T tables


Current Limitations


- [External Circuit]
- Today, S-parameters have to be wrapped into Spice models (vendor specific) and then used under [External Model/Circuit] Keyword.
 - On similar lines, BIRDs 116-118 propose that Touchstone file name can be parameterized for the IBIS-ISS sub-circuit, which means that IBIS-ISS wrapper could be written for the S-parameter element.

NEED: Extend support for direct usage of Sparameters

Current Limitations

- [External Circuit]
- The current [External Circuit] and [Circuit Call] usage rules do not allow the direct interconnection and instantiation of existing IBIS I/O models with the rest of the [External Circuit] blocks. Traditionally, users either use Spice or I-V/V-T tables.
- NEED: Extend use of [External Circuit] keyword to point to Spice sub-circuits that augment I-V/V-T data for complete characterization of IO-buffer.

Current Limitations

- [External Circuit]

- In order for a model developer to use an IBIS I/O model in an [External Circuit] the following steps need to be followed:
 - Develop SPICE like wrappers in which the corresponding typ, min, and max IBIS I/O sub-circuits are instantiated
 - Develop an [External Circuit] to point to the wrapper subcircuits
 - □ Use the [Circuit Call] keyword to call the [External Circuit].
- These usage rules are cumbersome especially when the developer can just directly call the desired IBIS I/O model without the need to develop a SPICE like wrapper as well as an [External Circuit] section.

Current Limitations of [External Circuit]

Solution

 Supporting S-parameters in [External Circuit] (BIRD144)

Simulating [External Circuit] in conjunction with I-V/V-T tables

Summary

Solution: Leveraging [External Model/Circuit] to Support Package S-parameters

- For support of package S-parameters:
 - IBIS model should have Keywords to support Touchstone
 S-parameters under Package section, with fields to
 - Point to Touchstone file from the Package section
 - Provide port-mapping of IO-buffer pins to S-parameter ports
 - R/L/C values should be ignored by SI tools if S-parameter file is used
- For support of S-parameters when representing elements beyond package parasitics: This can be achieved through use of [External Model] keyword that directly instantiates Touchstone file

- Positioning S-parameters as a method to completely define IO-buffer model or portions of IO-buffer requires support for:
 - Direct support of S-parameters without the need for wrapping
 - Port mapping of S-parameters
 - Corners beyond typ/min/max to provide flexibility of choosing various S-parameter files under different conditions

Support for Language 'Touchstone' with port-map

Example of True Differential [External Model] using TOUCHSTONE: [Model] Ext_TOUCHSTONE,_Diff_Buff Model_type I/o_diff Rref_diff = 100 Other model subparameters are optional min $ma \times$ typ 3.3 [Voltage Range] 3.0 3.6 [Ramp] dv/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n dv∕/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n [External Model] anguage TOUCHSTONE Corner corner_name file_name circuit_name (.subckt name) тур Min diffio.s8p corner NA corner diffio.s8p NA Corner мах diffio.s8p NA Ports List of port names (in same order as in TOUCHSTONE) Ports A_signal_pos A_signal_neg my_receive my_drive my_enable Ports A_puref A_pdref A_pcref A_gcref A_extref my_ref A_gnd vlow vhigh trise tfall corner_name D_to_A d_port port1 port2 з. 3 0.5n Didrive my_drive my_ref 0.0 0.3n тур Min D_to_A my_drive 0.0 D_to_A D_drive my_ref 3.0 0.6n 0.3n mý_ref D_drive my_drive 0.0 3.6 0.4n 0.3n D_to_A Max D_enable my_enable my_ref 0.0 3.3 0.5n 0.3n D_to_A тур D_enable my_enable D_to_A my_ref 0.0 3.0 0.6n 0.3n Min D_to_A D_enable my_enable my_ref 0.0 3.6 0.4n 0.3n Ma× port1 vhiqh A_to_D d_port port2 vlow. corner_name D_receive A_signal_neg A_signal_pos -200m 200m тур Min A_to_D -200m 200m A to D D_receive A_signal_pos A_signal_neg A_to_D D_receive A_signal_pos A_signal_neg -200m 200m Max [End External Model]

Picking different S-parameter files for different corners

Example of True Differential [External Model] using TOUCHSTONE: [Model] Ext_TOUCHSTONE,_Diff_Buff Model_type I/o_diff Rref_diff = 100 Other model subparameters are optional min $ma \times$ typ 3.3 [Voltage Range] 3.0 3.6 [Ramp] dv/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n dv⁄/dt_f 1.57/0.35n 1.68/0.28n 1.46/0.44n [External Model] Language TOUCHSTONE circuit_name (.subckt name) Corner corner_name file_name Corner тур Min diffio.s8p NA Corner diffio.s8p NA Corner Max diffio.s8p NA PORTS LIST OF PORT names (IN same order as IN TOUCHSTONE) Ports A_signal_pos A_signal_neg my_receive my_drive my_enable Ports A puref A pdref A pcref A gcref A extref my ref A gnd vlow vhigh trise tfall corner_name D_to_A d_port port1 port2 з.з 0.5n Didrive my_drive my_ref 0.0 0.3n тур Min D_to_A 0.6n D_to_A D_drive my_drive my_ref 0.0 3.0 0.3n mý_ref 0.4n D_to_A D_drive my_drive 0.0 3.6 0.3n Ma× D_enable my_enable my_ref 0.0 3.3 0.5n 0.3n D_to_A тур D_enable my_enable 3.0 0.3n D_to_A my_ref 0.0 0.6n Min D_to_A D_enable my_enable my_ref 0.0 3.6 0.4n 0.3n Ma× port1 vhiqh A_to_D d_port port2 vlow. corner_name 'A_signal_neg D_receive A_signal_pos -200m 200m тур Min A_to_D A_signal_pos A_signal_neg -200m 200m A_to_D D_receive A_to_D D_receive A_signal_pos A_signal_neg -200m 200m Max [End External Model]

 Supporting user-defined corners – each user-defined corner maps to typ/min/max IBIS corners

```
Example [External Model] using TOUCHSTONE with 2 userdef corners:
```

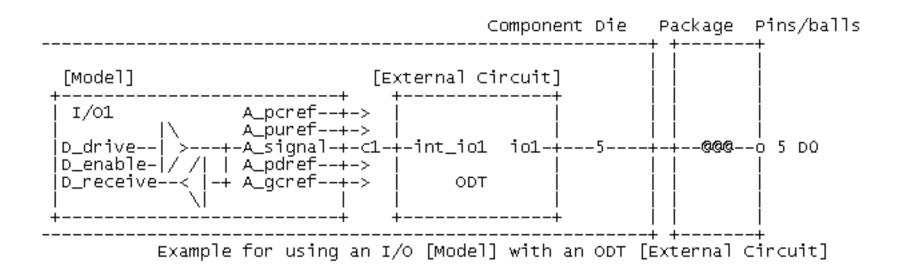
```
[Model] ExLinearBufferTouchstoneWithTwoUserDefCorners
Model_type Output
  Other model subparameters are optional
                           min
                   typ
3.3
                                  max.
.
Voltage Rangel
                           3.0
                                  3.6
[Ramp]
dv/dt_r
               1.57/0.36n
                             1.44/0.57n
                                           1.73/0.28n
dv/dt_f
               1.57/0.35n
                             1.46/0.44n
                                           1.68/0.28n
[External Model]
Language TOUCHSTONE
  Corner corner_name file_name
                                        circuit_name
                       buffer_typ.s2p
Corner
          тур
                                         NA
          Min
                       buffer_min.s2p
Corner
                                         NA
Corner
          Max.
                       buffer max.s2p
                                         NA
  Parameters List of parameters
Parameters MinNumber MaxNumber
  User_defined_corner user_defined_corner_name parameter_name parameter_value file_name corner_name
-User_defined_corner
                                                  buffer_min1.s2p
                        Min1
                                MinNumber
                                             1
                                                                    Min
User_defined_corner
                                                  buffer_max1.s2p
                                MaxNumber
                        Max1
                                             1
                                                                    Мах
```

Use in [External Model] and [External Circuit]

Example [External Model] using /OUCHSTONE: Example [External Circuit] using TOUCHSTONE: [Model] EXBufferTOUCHSTONE [External Circuit] BUFF-TOUCHSTONE Model_type I/O Language TOUCHSTONE lvinh = 2.0 ∨inl = 0.8 Corner corner_name file_name circuit_name (.subckt name) buffer_typ.s9p NA тур Corner Other model subparameters are optional Min buffer_min.s9p NA Corner buffer_max.s9p NA Corner мах min typ, max [Voltage Range] 3.0 3.6 Ports List of port names (in same order as in TOUCHSTONE) Ports A_signal int_in int_en int_out A_control [Ramp] Ports A_puref A_pdref A_pcref A_qcref 1.57/0.36n 1.44/0.57n 1.73/0.28n ldv/dt_r 1.46/0.44n dv/dt_f 1.57/0.35n 1.68/0.28n D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name D_drive int_in my_qcref 0.0 3.3 0.5n 0.3n Typ D_to_A [External Model] D_drive int_in my_gcref 0.0 3.0 D_to_A 0.6n 0.3n Min Language TOUCHSTONE D_drive int_in my_gcref 0.0 3.6 0.4n 0.3n Max D_to_A D_to_A D_enable int_en my_qnd 0.0 3.3 0.5n 0.3n тур Corner corner_name file_name circuit_name (.subckt D_enable int_en mý_qnd 0.0 3.0 0.6n 0.3n D_to_A Min buffer_typ.s7p NA тур ICorner D_to_A D_enable int_en my_gnd 0.0 3.6 0.4n 0.3n Max buffer_min.s7p NA lcorner Min. Corner Max. buffer_max.s7p NA A_to_D d_port port1 port2 vlow vhigh corner_name D_receive int_out my_acref 0.8 2.0 | Ports List of port names (in same order as in TOUCHSTONE)^{A_to_D} тур D_receive int_out my_gcref 0.8 2.0 Mìn A_to_D Ports A_signal my_drive my_enable my_receive my_ref D_receive int_out my_gcref 0.8 2.0 A_to_D Мах Ports A_puref A_pdref A_pcref A_qcref A_extref vlow vhigh trise tfall[End External Circuit] D_to_A d_port port1 port2 D_drive my_drive my_ref 0.0 3.3 0.5n 0.3n D_to_A тум D_to_A D_enable my_enable A_gcref 0.0 3.3 0.5n 0.3n тур vlow vhigh corner_name A_to_D d_port port2 port1 A_to_D D_receive my_receive my_ref 0.8 2.0 TVP Note: A_signal might also be used instead of a user-defined interface port for measurements taken at the die pads [End External Model]|

Current Limitations of [External Circuit]

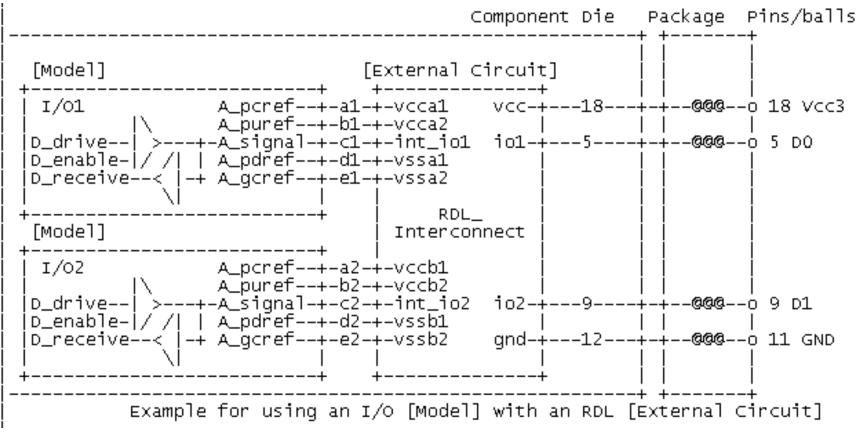
Solution


Supporting S-parameters in [External Circuit]

 Simulating [External Circuit] in conjunction with I-V/V-T tables(BIRD145)

Summary cādence[®]

 Ability to connect External Circuit to IBIS I/O model. The External Circuit could represent RDL parasitics, portion of active I/O buffer, some algorithmic part of I/O buffer.



[Pin] signal_name model_name R_pin L_pin C_pin

	1	RAS0#	Buffer1	200.0m 5.0nH 2.0pF
	2	RAS1#	Buffer2	209.0m NA 2.5pF
	3	EN1#	Input1	NA 6.3nH NA
•	4	A0	3-state	
	5	D0	I/O1	
	6	RD#	Input2	310.0m 3.0nH 2.0pF
•	7	WR#	Input2	
•	8	A1	I/O2	
•	9	D1	I/O2	
	10	GND	GND	297.0m 6.7nH 3.4pF
	11	RDY#	Input2	
•	12	GND	GND	270.0m 5.3nH 4.0pF

HERE DO, D1 are to be modeled as I/O1, I/O2 buffers followed by RDL Spice and represent a differential buffer

I/O1 and I/O2 are followed by RDL Spice model

[Node Declarations]	Must appear before any [Circuit Call] or [Model Call] keyword		
 Die nodes a1 b1 c1 d1 e1 a2 b2 c2 d2 e2	List of die nodes representing signals that connect models		
l [End Node Declaratio	ons]		
the tool to instantiate	01" must be present in the IBIS file in order to enable and connect the called model "as usual" based on es as well as the subparameters under the corresponding		
[Model Call] I/O1	Instantiates [Model] named "I/O1"		
ا mapping port د ا	oad/node		
Port_map A_pcref	a1 Port to internal node connection		
Port_map A_puref	b1 Port to internal node connection		
Port_map A_signal	c1 Port to internal node connection		
Port_map A_pdref	d1 Port to internal node connection		
Port_map A_gcref	e1 Port to internal node connection		
 [End Model Call]			

- INOTE:
- A [Model] named "I/O2" must be present in the IBIS file in order to enable
- I the tool to instantiate and connect the called model "as usual" based on
- I the I-V and T-V curves as well as the subparameters under the corresponding
- [Model] section.
- [Model Call] I/O2

| Instantiates [Model] named "I/O2"

| Port to internal node connection

I mapping port

pad/node

a2

e2

- Port
- Port_map A_pcref
- Port_map A_puref b2
- Port_map A_signal c2
- Port_map A_pdref d2
- Port_map A_gcref
- - [End Model Call]

- [Circuit Call] RDL_Interconnect | Instantiates [External Circuit] named "RDL_Interconnect"

mapping port pad/node

18

5

9

b1

c1

a2

d2

e2

- Port_map vcc
- Port map gnd
- Port map io1
- io2 Port map
- Port map vcca1 Port_map vcca2
- Port_map int_io1
- Port_map vssa1
- Port map vssa2
- Port map vccb1
- Port_map vccb2
- Port_map int_io2
- Port_map vssb1
- Port map vssb2
- - [End Circuit Call]

- | Port to implicit pad connection
- 12 | Port to implicit pad connection
 - Port to implicit pad connection
 - Port to implicit pad connection
- Port to internal node connection a1
 - Port to internal node connection
 - Port to internal node connection
- d1 Port to internal node connection e1
 - Port to internal node connection
 - Port to internal node connection
- b2 Port to internal node connection c2
 - Port to internal node connection
 - Port to internal node connection
 - Port to internal node connection

Agenda

Requirement

Current Limitations of [External Circuit]

Solution

- Supporting S-parameters in [External Circuit]
- Simulating [External Circuit] in conjunction with I-V/V-T tables

Summary

cādence[®]

Summary

- With increase in frequencies, we need enhanced usage of External Model / Circuit
 - S-parameters are becoming common way to model portions of I/O buffers and package parasitics; Hence need to have direct support of S-parameter model under [External Model/Circuit]. This has been proposed as BIRD144
 - Significant portion of I/O buffer gets modeled as Spice/Sparameters to augment the main analog buffer to capture the high frequency behavior; Hence need to have easy way to connect External Circuit to I-V/V-T table-model. *This has been proposed as BIRD145*

BIRD144 and BIRD145 can be accessed at <u>http://www.eda.org/pub/ibis/birds/</u>

- The BIRDs would be considered and discussed by the IBIS open forum
- Other BIRDs will also be considered that might be alternatives or add-on to this proposal

cādence[®]

