

Pseudo transient eye analysis by convolution method

Baolong Li

baolong.li@ansys.com

ANSYS China

IBIS Asia Summit 2011. Nov.15th 2011, Shanghai, China

ANSYS Background

 In IBIS Asia summit 2008, we have first introduced statistical analysis method for GHz analysis

http://www.eda.org/ibis/summits/nov08a/li.pdf

- Statistical analysis used convolution method for fast SSE (Solution Space Explorer), but it has limits
 - Suitable for LTI system
 - Not as accurate as SPICE transient eye
- Today, we'll discuss the convolution method for Non-LTI system and introduce pseudo transient eye analysis by convolution method

ANSYS Convolution and LTI system

$$X_1(t) \Rightarrow Y_1(t)$$

 $X_2(t) \Rightarrow Y_2(t)$ Input yields output

$$X_1(t) + X_2(t) \Rightarrow Y_1(t) + Y_2(t)$$
 Additive property

$$aX_1(t) \Rightarrow aY_1(t)$$
 Homogeneity property

$$X_1(t-\tau) \Rightarrow Y_1(t-\tau)$$
 Time invariant property

How About Non-linear System?

Simple channel with driver that has a nonlinear self impedance:

Transient vs. Convolution for Linear network

Transient Eye Height = 618 mV

Convolution Eye Height = 619 mV

Transient vs. Convolution for Small Nonlinearity

588 mV Convolution eye Height = 587 mV

Transient vs. Convolution for Larger Nonlinearity

Convolution Height = 560 mV

 Test cases show that even Convolution make an assumption of linearity, accuracy is often excellent for moderately nonlinear drivers

ANSYS Typical GHz Transient simulation

- Complex transistor-level models can result in substantial run times for long bit patterns.
- Can we shorten run times and maintain acceptable accuracy?

Hspice receive

Hspice receive

Pseudo transient eye analysis

Pseudo transient like IBIS' V-T curve:

- Run transient simulations using SPICE to capture the step response of the channel, Store step responses in text files
- Separate rising and falling responses can be specified
- Run convolution using these external step responses
- Theory is based on LTI assumption

Pseudo transient eye analysis(cont.)

Pseudo transient eye results will closely match transient if buffers are approximately linear

Pseudo transient eye vs. SPICE transient eye

Pseudo transient and SPICE transient

- After capturing 100ns transient step response for rising, falling, and crosstalk edges, 100,000 bits run in seconds by convolution
- Results consistent with SPICE transient

ANSYS Conclusion

- Even Statistical eye analysis by using convolution method is assumption LTI system, sometimes it also can be used for Non-Linear system, but the simulator must be tested
- SPICE transient step response can also be used in Statistical analysis for Pseudo transient
- Chip vendor maybe supply typical channel's step response for end user evaluation. EDA vendor also can give the comparison of pseudo transient and SPICE transient for user reference.