

AMI Applications in High-speed Serial Channel Analysis and Measurement Correlation

Jia Wei, Sunanbing, Zhu ShunLin

Jia.wei@zte.com.cn, sun.anbing@zte.com.cn, Zhu.shunlin@zte.com.cn

High-Speed System Lab, ZTE Corporation Bringing you closer

Asian IBIS Summit

Shanghai, China November 15, 2011

IBIS-AMI Model versus Transistor-Level Model

- AMI Applications in High-speed Serial Channel Analysis
- AMI Model Accuracy Verification
- Summary and Suggestions

IBIS-AMI Model versus Transistor-Level Model

IBIS-AMI Model

- Accuracy simulation and fast run time
- IP Protection
- Supported by most EDA tools
- AMI model to provide adaptive DFE, CDR, jitter and other simulation

Transistor-Level Model

- Good accuracy
- models are derived from transistor-level netlist and layout
- Relatively long simulation time and sometimes convergence problems
- Intellectual property protection concerns

IBIS-AMI Model

- Combination of analog & algorithmic elements
- Analog part can be condidered linear and time-invariant
- Equalization and CDR can be modeled at the algorithmic part

Picture reference from "IBIS-AMI Terminology Overview" at DAC 2009 IBIS Summit

IBIS-AMI Model versus Transistor-Level Model
AMI Applications in High-speed Serial Channel Analysis
AMI Model Accuracy Verification
Summary and Suggestions

Methods in10Gbps serial channel analysis

IBIS-AMI Model Validation Setup

IBIS-AMI models for performance evaluation of two different channel

Channel 1 :

Backplane traces 40inch 、 Two connectors , Two test fixture、 test cable. Backplane side over the hole stubs 37mil.

Channel 2 :

Backplane traces 40inch 、 Two connectors , Two test fixture、 test cable. Backplane side over the hole stubs 150mil.

Channel 1 and Channel 2 Simulation results compare(PRBS31) :

Eye Height	239.11mv
Jitter (pp)	32.40ps
Rise time	45.84ps

Eye Height	53.61mv
Jitter (pp)	51.98ps
Rise time	58.42ps

BER Test

- Use BERT and chip test board for channels 1 and 2 bit error rate test.
- BERT Generates the source signal and also receives the loopback signal for ber test.

Test Board

System interconnect

BER test results

Men	BER: -11 -10 -9 -8 -7 - Accumula	0.000 6 -5 -4 -3 -2 -1 0 ated Results	Elapsed 13:19:06	Error Add Inse	ert B A – Remote
Ratios	0 -2 -2	6:00	Ratios		0:00 1 Days
	Measurement Bit Count Bit Error Ratio (BEF Error Count Errored 1's Ratio Errored 1's Count Errored 1's Catio	G.821 Measuremen	ts Interva Results Current Period 0.49451058E15 0.00000000 0 0 0.00000000 0 0 0.0000000	Accumulation Parameter Previous Period 0 0.00000000 0 0.00000000 0 0.00000000	Burst Results

More than 12 hours of the bit error rate test, there was no error.

More than 12 hours of the bit error rate test, the emergence of four errors.

ZTE中兴

IBIS-AMI Model versus Transistor-Level Model
AMI Applications in High-speed Serial Channel Analysis
AMI Model Accuracy Verification
Summary and Suggestions

AMI model accuracy verification

- Simulation channel : Transmitter package parameters 、 Backplane traces 10inch 、 Two connectors 、 Two test fixture 、 Connection cable.
- The chip emits a signal after transmission through backplanes direct access to the BERT test in the eye.
- Simulation and test using the same pattern PRBS15 , Rate 8Gbps , The same pre-emphasis settings (10dB).

AMI model accuracy verification

Simulation results compared with test results—Output 600mv

	Simulation	Test
EyeAmplitude	196.17mv	170.09mv
jitter (pp)	46.00ps	49.22ps
EyeRiseTime	61.7ps	50.60ps

Conclusions :

- 1, Good Correlation in total eye.
- 2、 A little defference in rise edge .

AMI model accuracy verification

Simulation results compared with test results—Output 1200mv

	Simulation	Test
EyeAmplitude	392.34mv	345.30mv
jitter (pp)	46.00ps	50.64ps
EyeRiseTime	61.54	50.77ps

Conclusions : Same as output 600mv.

IBIS-AMI Model versus Transistor-Level Model
AMI Applications in High-speed Serial Channel Analysis
AMI Model Accuracy Verification
Summary and Suggestions

- Serial channel analysis using the AMI model simulation can provide good guidance for the design.
- AMI model can be applied to more signal integrity assessment such as crosstalk, jitter, high-speed connector performance analysis.
- The work of AMI model simulation Verification need to be improved, We hope to get more and better ways.

IBIS-AMI model can greatly improve the efficiency of high-speed serial signal simulation ,howeverwe still have encountered the following problems:

- AMI model is currently not uniform and IC vendors supply various models, so it is difficult for users to run them with right EDA tools.
- Some EDA tools supported AMI models are not perfect in function. For example the setting is not convenient to use, TX&RX AMI models can not be simulated alone etc.
- Some AMI models can not support adaptive DFE fuction perfectly. Users need to manually set the value or adaptive DFE operating results are not correct.

Bringing you closer

© ZTE Corporation. All rights reserved.