Extending/Leveraging IBIS Constructs to Model High-Speed I/Os and Packages using AMI, Spice, and S-Parameters

cādence

John Lin Flextronics, Inc

Taranjit Kukal, Feras Al-Hawari, Ambrish Varma Cadence Design Systems, Inc.

Presented by: Kevin Liu – Cadence

Note: Previously presented at IBIS Summit in China Nov. 9

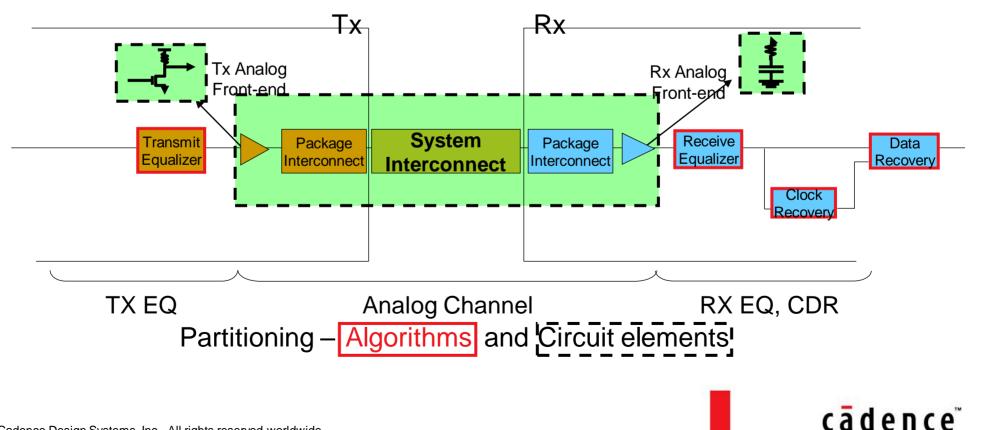
Asian IBIS Summit Taipei, Taiwan November 12, 2010

(c) 2010 Cadence Design Systems, Inc. All rights reserved worldwide.

Agenda

- IBIS Overview
- Why extend IBIS to SPICE models
 - Current Limitations
- Leveraging [External Model] to allow including Package S-Parameters for High Speed simulation
 - Example
- Extending [External Model] to:
 - Simulate VI-VT model in conjunction with Spice sub-circuits that represent RDL elements, DSP Spice code, etc.
 - Dynamically switch sub-circuits to take care of corners and parametric variations.
 - Simulate AMI with [External Model] that represents analog IO modeled in Spice or S-parameters.

cadence


Agenda

- IBIS Overview
- Why extend IBIS to SPICE models
 - Current Limitations
- Leveraging [External Model] to allow including Package S-Parameters for High Speed simulation
 - Example
- Extending [External Model] to:
 - Simulate VI-VT model in conjunction with Spice sub-circuits that represent RDL elements, DSP Spice code, etc.
 - Dynamically switch sub-circuits to take care of corners and parametric variations.
 - Simulate AMI with [External Model] that represents analog IO modeled in Spice or S-parameters.

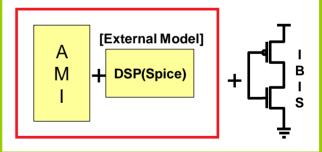
cadence

IBIS overview

- Analog IO model is modelled by IBIS VI and VT curves
- Equalization (DSP algorithmic) portion of IO model is modelled by AMI C-code (Algorithmic Model Interface) that is pointed by IBIS model
- RDL and or pin parasitics are lumped into pin R/L/C values

Why extend IBIS to SPICE models

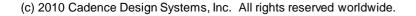
- At high frequencies, IO buffers could have portions that need to be modeled using Spice files:
 - On DIE Terminations (ODT) that vary with frequencies need to be expressed as s-parameters or RLGC Spice files
 - On DIE RDL parasitics become significant and vary with frequencies and hence have to be expressed as sparameters or SPEF
 - Analog portion of IO-buffer is expressed as Spice as against VI-VT curve; s-parameters can also be used to describe transfer characteristics of IO-buffer amplifiers.
 - Some algorithmic portion may be modeled in Spice as against AMI code


Why extend IBIS to SPICE models

- Multiple Sub-circuits / Spice files
 - Different Spice sub-circuits could be applicable for different process corners. On-DIE RDL could be expressed as different s-parameter files for typ/min/max conditions.
 - Different Spice sub-circuits could be applicable for different buffer configurations. For example, Preemphasis portion could have been modeled as Spice using different sub-circuits for different settings.
 - ODT could be a function of current being drawn out of IO-buffer (Dynamic ODT) and could have been expressed as behavioral Spice, Verilog-A

Current Approach and Limitations

- Package parasitics can be used as S-parameters by including them as part of interconnect network in a way similar to external interconnect parasitics.
 - Limitation
 - RDL parasitics that need to be part of IO-buffer characterization are treated as interconnects and assumed bi-directional.
- Spice IO-buffers can be included as part of IBIS using [External Model] Keyword.
 - Limitations
 - Cannot model DSP (in SPICE) in conjunction with AMI model
 - Use of [External Model] in conjunction with VI-VT (IBIS) is not recommended today
 - Does not directly support s-parameters (Touchstone)
 - For example, it is not easy to model RDL and other elements in conjunction with VI-VT curves cannot take care of process corners and parametric selection of subcircuits



- IBIS Overview
- Why extend IBIS to SPICE models
 Current Limitations
- Leveraging [External Model] to allow including Package S-Parameters for High Speed simulation
 - Example
- Extending [External Model] to:
 - Simulate VI-VT model in conjunction with Spice sub-circuits that represent RDL elements, DSP Spice code, etc.
 - Dynamically switch sub-circuits to take care of corners and parametric variations.
 - Simulate AMI with [External Model] that represents analog IO modeled in Spice or S-parameters.

cadence

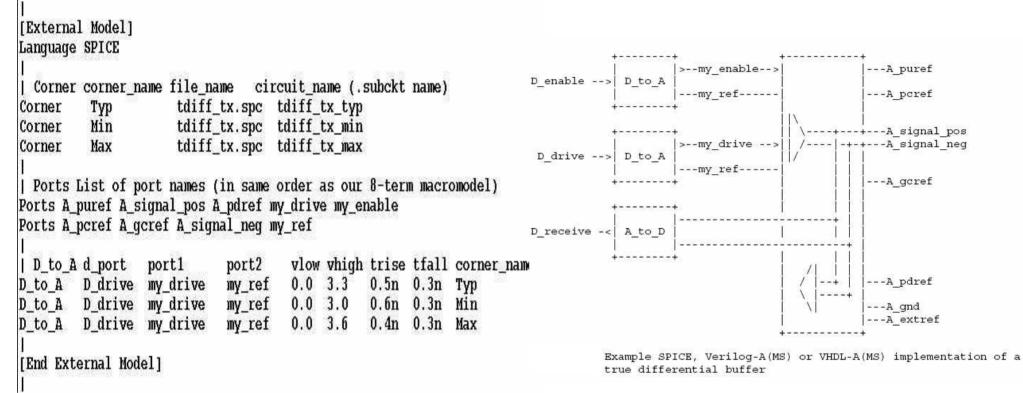
Leveraging [External Model] to Support Package S-Parameters

- Long-term: IBIS model should have Keywords to support Touchstone S-parameters under Package section, with fields to
 - point to touchstone file from the Package section
 - provide port-mapping of IO-buffer pins to s-parameter ports
 - R/L/C values should be ignored by SI tools if s-parameter file is used
- Short-term: This can be achieved through use of [External Model] keyword
 - Set R/L/C values in package keyword as ZERO (to avoid double counting)
 - Point to the touchstone file of the package inside the Spice subcircuits

Example : Support for S-parameters for package parasitics using [External Model]

- Use IBIS Device with 4 pins (1, 2, 3, and 4)
- Pins 1 and 2 are +ve and -ve diff pins respectively, with a "tx" diff model assigned to both of them
- Pins 3 and 4 are +ve and -ve diff pins respectively, with a "rx" tdiff model assigned to both of them
- Tx and Rx contain corresponding
 - [External Model] section

Example


[Manufacturer] _{Xyz} [Package] variable typ		MyCom] xyz	p		Make values zero or NA		
		0.0m OnH		min O.Om OnH OpF		max 0.0m 0nH 0pF	0.0m OnH
 [Pin]	signa	l_name	mode	el_name	R_pi	n L_pir	ı C_pin
1	OUT 1		tx	NA	NA	NA	
2	OUT2		tx	NA	NA	NA	
2 3 4	IN1		rx	NA	NA	NA	
4	IN2		rx	NA	NA	NA	
Diff	Pin] i	nv_pin	vdiff	tdelay_ty	yp tdela	ay_min tde	ay_max
1	2 4		200mV	0ns	Ons	s Ons	5
			200mV	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.04.00.00	23	

(c) 2010 Cadence Design Systems, Inc. All rights reserved worldwide.

- Set the values of all package parasitics to 0 or NA because in this case we will model the package using an s-parameter that is referenced from the Rx/Tx subckts
 - Assign the same model to each diff pin (e.g., tx is assigned to pins 1 and 2)
- Define the diff pins (e.g., 3 and 4) and specify vdiff

cadence

Example

- Specify language as SPICE
- Specify the SPICE files that contain the subckts for the typ/min/max corners i.e., tdiff_rx.spc in this case;
- tdiff_rx.spc should contains the following subckts tdiff_rx_typ, tdiff_rx_min, and tdiff_rx_max
- Ports can be split on separate lines, but each line is a continuation for the previous one (in this case each subckt has 9 ports)
- Add the D/A or A/D statements (no need for D_enable and D_Drive conversion for input models)

Example

.subckt tdiff_tx_typ 1 2 3 my_drive my_enable 6 7 8 my_ref

* The terminals in an 8-terminal differential MacroModel are as follows:

```
power = 1
outp = 2
```

```
øround = 3
```

```
* input = 4
```

```
* enable = 5
```

```
power_clamp_reference = 6
ground_clamp_reference = 7
```

```
≰ _____8
```

```
v1 my_ref 0 0
r1 my_enable 0 1e6
r2 my_drive my_ref 1e6
```

```
erx in 0 v='v(my_drive,my_ref)'
einv inv 0 v='v(1) - v(in)'
```

```
S1 in 2 inv 8 algorithm=default file= diff_pkg.s4p
```

.ends

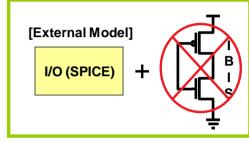
- The SPICE subckt tdiff_tx_typ for the typical corner in tdiff_tx.spc is as shown on the left. Min and Max similar.
- We need to connect the extra IBIS nodes inside the subckt to make sure there are no disconnected nodes in the circuit
- This is a simple pass-through driver that applies the "in" stimulus and its inverted pattern to the package input nodes
- The s-parameter file (diff_pkg.dat) for the package is referenced internally in the subckt and connects the in and inv stimulus to the I/O output nodes i.e. 2 and 8

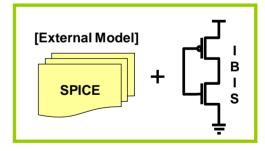
cadence

Similar for Rx

- IBIS Overview
- Why extend IBIS to SPICE models
 - Current Limitations
- Leveraging [External Model] to allow including Package S-Parameters for High Speed simulation
 - Example

• Extending [External Model] to:


- Simulate VI-VT model in conjunction with Spice sub-circuits that represent RDL elements, DSP Spice code, etc.
- Dynamically switch sub-circuits to take care of corners and parametric variations.
- Simulate AMI with [External Model] that represents analog IO modeled in Spice or S-parameters.


cadence

Simulate VI-VT model in conjunction with Spice

• Traditionally [External Model] keyword has been used for IO-buffer that needs to characterized as Spice IO in which case IBIS VI-VT data is not required.

- Extend use of [External Model] keyword to point to Spice sub-circuits that augment VI-VT data for complete characterization of IO-buffer.
 - Model On-DIE RDL parasitics using Spice or Sparameters that connect to Analog IO-buffer characterized as VI-VT data
 - Model DSP algorithm in Spice that works in conjunction with VI-VT data

Simulate VI-VT model in conjunction with Spice

[External Model]

Language SPICE | SPARAM

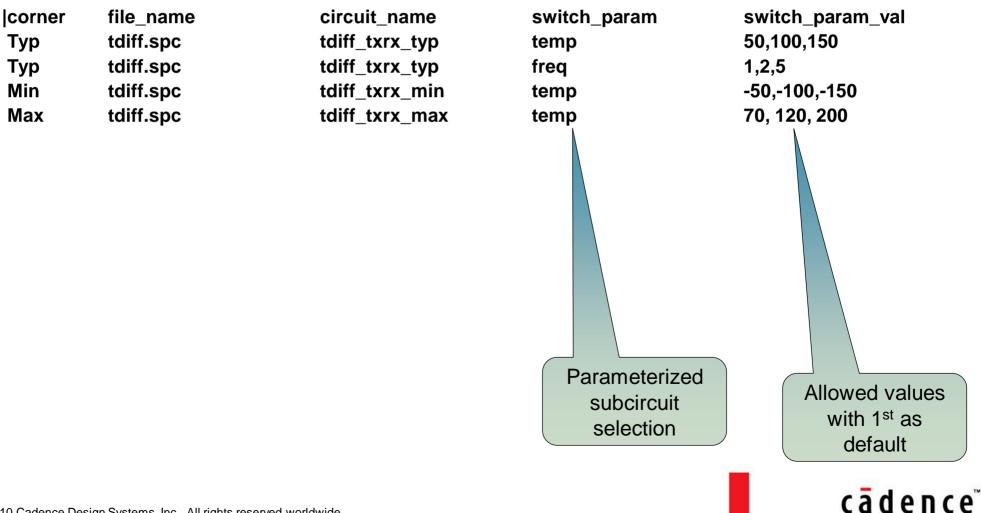
Type Other(VI-VT tables are required when Type is not I/O, Allowed Types are 'I/O' and 'Other',
where 'Other' can be RDL, ODT, DSP, etc or any combination)

corner	file_name	circuit_name	
Тур	dsp.spc dsp_typ.s4p	dsp_typ	
Min	dsp.spc dsp_min.s4p	dsp_min	
Max	dsp.spc dsp_max.s4p	dsp_max	

| Ports List of port names (in same order as in SPICE | SPARAM)
Ports A_signal_pos A_signal_neg my_receive my_drive my_enable
Ports A_puref A_pdref A_pcref A_gcref A_extref my_ref A_gnd

cādence

- IBIS Overview
- Why extend IBIS to SPICE models
 - Current Limitations
- Leveraging [External Model] to allow including Package S-Parameters for High Speed simulation
 - Example


• Extending [External Model] to:

- Simulate VI-VT model in conjunction with Spice sub-circuits that represent RDL elements, DSP Spice code, etc.
- Dynamically switch sub-circuits to take care of corners and parametric variations.
- Simulate AMI with [External Model] that represents analog IO modeled in Spice or S-parameters.

cadence

Dynamically switch sub-circuits to take care of corners and parametric variations.

[External Model] Language SPICE

- IBIS Overview
- Why extend IBIS to SPICE models
 - Current Limitations
- Leveraging [External Model] to allow including Package S-Parameters for High Speed simulation
 - Example

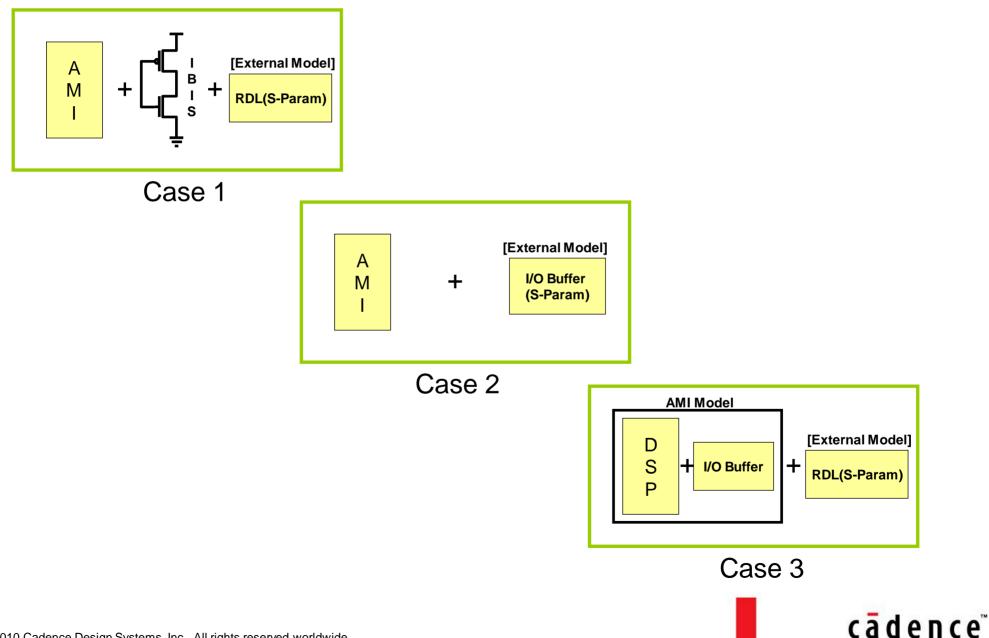
• Extending [External Model] to:

- Simulate VI-VT model in conjunction with Spice sub-circuits that represent RDL elements, DSP Spice code, etc.
- Dynamically switch sub-circuits to take care of corners and parametric variations.
- Simulate AMI with [External Model] that represents analog IO modeled in Spice or S-parameters.

cadence

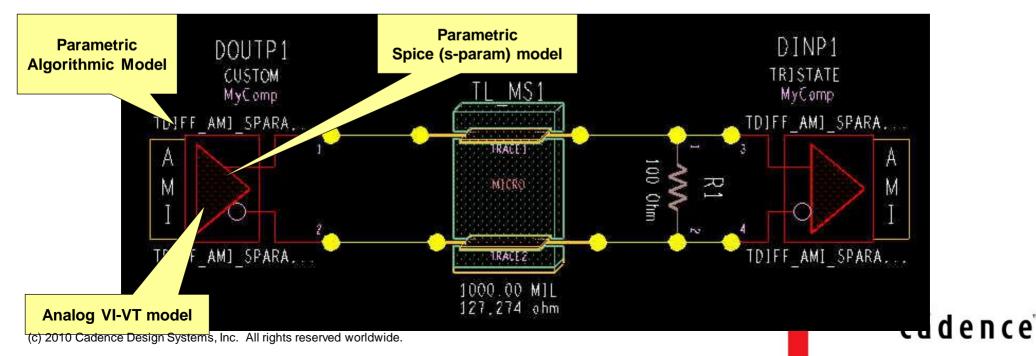
Using AMI in conjunction with [External Model]

- Analog IO buffers in some cases could be modeled as s-parameters or as Spice subcircuits. These models then work in conjunction with AMI code that represents DSP portion of IO-buffers. There could be even situations where IO-core itself becomes part of this AMI code.
- Hence we need to support AMI model simulation in absence of VI-VT data.
 - AMI model + Analog buffer represented as Spice-IO
 - AMI model + VI-VT Analog buffer + RDL (etc) in [External Model] (Case 1)
 - AMI model + Analog buffer represented as S-parameter-IO
 - AMI model (contains Analog-IO buffer coded as in AMI itself) + S-parameter/Spice RDL (Case 3)


[External Model]	
Language SPARAM	
Type I/O	(VI-VT tables are not required as S-Params represent the analog I/O buffer or RDL etc + I/O buffer)
corner	file_name
Тур	io_typ.s4p
Min	io_min.s4p
Max	io_max.s4p

| Ports List of port names (in same order as in SPICE | SPARAM)
Ports A_signal_pos A_signal_neg my_receive my_drive my_enable
Ports A_puref A_pdref A_pcref A_gcref A_extref my_ref A_gnd

cādence


(Case 2)

Using AMI in conjunction with [External Model]

Summary

- Package parasitics can be modeled as SPICE using [External Model]; but we need to support S-parameters and it should be under proper keyword in Package-Section
- [External Model] has been traditionally used as alternate to VI-VT data; but we need to leverage it to use this model in conjunction with VI-VT
- [External Model] should support parameter switching to pick subcircuits dynamically
- AMI model today assumes analog-IO available as VI-VT; AMI model should work in conjunction with [External Model]

cādence[™]

(c) 2010 Cadence Design Systems, Inc. All rights reserved worldwide.