Correlating C_pin Capacitance with Measurements

Asian IBIS Summit Shenzhen, China November 9, 2010

Randy Wolff Micron Technology rrwolff@micron.com

© 2010 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

November 2010

C_pin

- Package capacitance for a specific signal [Pin]
- Typically from diagonal elements of the capacitance matrix – extracted from 3D field solvers

1					
COMPONENT:	MT41J256M8DA	. (78-Ball FBG	A, x8, 8mm X	10.5mm)	
* * * * * * * * * * *	* * * * * * * * * * * * *	*****	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * *
L					
[Component]	MT41J256M	I8DA			
[Package Mod	<mark>el]</mark> v89b_78ba	ll_pkg			
[Manufacture	r] Micron Te	chnology, Inc.			
[Package]		T			
I	typ	min	max		
R_pkg	257.47m	178.77m	383.81m		
L_pkg	1.43nH	0.98nH	2.38nH		
C_pkg	0.36pF	0.29pF	0.49pF		
I					
[Pin]	signal_nam	e model_name	R_pin	L_pin	C_pin
A1	VSS	GND			
A2	VDD	POWER			
A3	NC	NC			
A7	NF_TDQS#	NF_TDQS	267.15m	1.36nH	0.41pF
A8	VSS	GND			
A9	VDD	POWER			
B1	VSS	GND			
B2	VSSQ	GND			
B3	DQO	DQ	247.18m	1.08nH	0.39pF
B7	DM TDQS	DM TDQS	242.95m	1.47nH	0.37pF

Measured Capacitance

- Diagonal of matrix is total capacitance seen by each line with all other lines grounded
 - Fully-loaded capacitance is useful for single line simulations
- Measured capacitance is less than fully-loaded capacitance
 - Signal is referenced to power and ground (pwr/gnd decoupled)
 - All other signal lines are floating

Micron

November 2010

Why is this important?

- C_comp calculation and Model correlation
 - C_comp = C_signal(measured) C_pin(measured)
 - C_pin ≠ C_pin(measured)
- Datasheet comparisons
 - C_{specification} is based on measured values, not total capacitance
 - Estimating measured values from package simulation data aids in optimizing package designs to meet capacitance specifications

Capacitance		DDR	3-800	DDR3	-1066	DDR3	-1333	DDR3	-1600	DDR3	-1866	
Parameters	Symbol	Min	Max	Unit								
CK and CK#	с _{ок}	0.8	1.6	0.8	1.6	0.8	1.4	0.8	1.4	0.8	1.3	рF
∆C: CK to CK#	С _{DCK}	0	0.15	0	0.15	0	0.15	0	0.15	0	0.15	рF
Single-end I/O: DQ, DM	CIO	1.5	3.0	1.5	3.0	1.5	2.5	1.5	2.3	1.4	2.2	рF
Differential I/O: DQS, DQS#, TDQS, TDQS#	CIO	1.5	3.0	1.5	3.0	1.5	2.5	1.5	2.3	1.4	2.2	pF
∆C: DQS to DQS#, TDQS, TDQS#	CDDQS	0	0.2	0	0.2	0	0.15	0	0.15	0	0.15	pF
∆C: DQ to DQS	CDIO	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	рF

C_pin (measured) vs. Fully-loaded Cap

(Extracted pin cap after matrix post-processing)

(Diagonals of Maxwell's Matrix)

- The matrix form of the capacitance equation is [Q] = [C] * [V]
- For a 2x2 system, the C matrix is :
 - | Ct1 -C12 | | -C12 Ct2 |
- Ct1 = C1 + C12 and Ct2 = C2 + C12

Deposit a charge of Q on Node 1

| Ct1 -C12 | * | V1 | = | Q |

|-C12 Ct2 | * | V2 | = | 0 |

- Ct1 * V1 C12 * V2 = Q
- -C12 * V1 + Ct2 * V2 = 0, V2 = C12/Ct2 * V1
- (Ct1 C12^2/Ct2) * V1 = Q
- Cnode1 = Q/V1 = (Ct1 C12^2/Ct2)
- In matrix form, let Q = 1 coulomb

| V1 | = Inv (| Ct1 -C12 |) * | 1 |

| V2 | = Inv (| -C12 Ct2 |) * | 0 |

• This yields V1 and V2 and Cnode1 = 1/V1, since Q = 1

 Let Node 2 be grounded - this forces V2 = 0 and allows a net negative charge on Node 2

> | Ct1 -C12 | * | V1 | = | 1 || -C12 Ct2 | * | 0 | = | 0 |

- 1: Ct1 * V1 C12 * 0 = 1 , V1 = 1/Ct1
- 2: -C12 * V1 + Ct2 * 0 = Q, Q = C12/Ct1

- The only value of interest is V1, only equation 1 is needed. This is the same as eliminating the 2nd row of the [C] matrix.
- V2 = 0, so all of the terms in the 2nd column will multiply to 0. This eliminates the 2nd column of [C].
- The matrix equation reduces to | Ct1 | * | V1 | = | 1 |

- Generalized: Let [C] be an n+m x n+m matrix representing n floating nodes and m nodes clamped to power or ground.
- Step 1 eliminate the rows and columns associated with clamped nodes.
 - [C] -> [C'], where [C'] is an n x n matrix.
 - ▶ |C'| = |Reduction Matrix2| * |C| * |Reduction Matrix1|
 - If net i is clamped then row i of Reduction Matrix1 is all 0s
 - If net i is floating then row i of Reduction Matrix1 is all 0s with a 1 in column x
 x = i # of clamped nets between net 1 and net i
 - If net i is clamped then column i of Reduction Matrix2 is all 0s
 - If net i is floating then column i of Reduction Matrix2 is all 0s with a 1 in row x

x = i - # of clamped nets between net 1 and net i

- Step 2 Generate Q matrix n x n identity matrix
 - Represents a 1 coulomb charge deposited on each floating node, one at a time.
- Step 3 solve for [V] matrix

▶ [V] = inv([C']) * [Q], where [Q] is identity matrix

- Step 4 Calculate floating node capacitances
 - Cnode(x) = 1/Vxx, where Vxx are the diagonal elements of [V]
- Overall effect is mutual capacitances are reduced due to shorting of the mutual terms to power and ground nets

Micron's Capacitance Analyzer Tool

- Excel spreadsheet macro
- Reads in matrix data from several Field Solver tools
- Solves for 'measured' capacitance
- Nets are defined as either 'floating' or 'grounded'

Line number	Line Name	Signal_State
1	A0	Floating
2	A1	Floating
3	A2	Floating
59	VDD	Grounded
60	VDDQ	Grounded
61	VSS	Grounded
62	VSSQ	Grounded
63	WE#	Floating

Signal Names	Pin Capacitance	Maxwell Diagonal Capacitance
A0	9.48269E-13	1.22479E-12
A1	1.05993E-12	1.29176E-12
A2	1.06298E-12	1.20089E-12
A3	9.97877E-13	1.0904E-12
A4	7.88691E-13	8.36509E-13
A5	8.79004E-13	1.09757E-12

C_pin versus C_pin(measured)

LPDDR 168 ball PoP

Micron

Conclusions

- Capacitance matrix data must be manipulated when comparing it to measured capacitance
 - Maxwell capacitance is not what is typically measured
 - Important for datasheet comparisons and model to simulation correlation

Acknowledgements

• Thanks to Bruce Schober at Micron for development of the analyzer tool and figuring out the matrix math.

