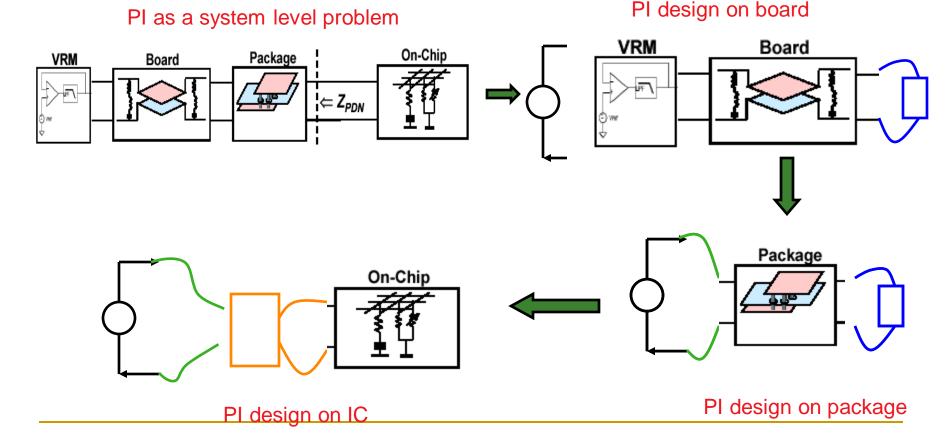
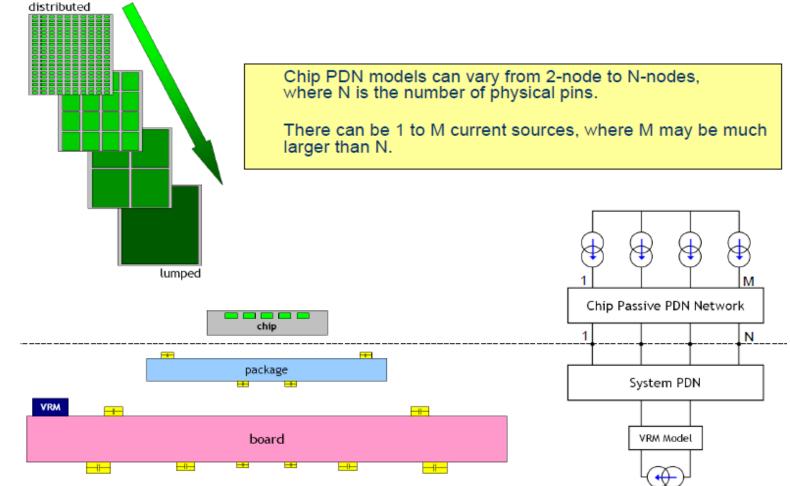
Model Connection Protocol extensions for Mixed Signal SiP

Taranjit Kukal (<u>kukal@cadence.com</u>) Dr. Wenliang Dai (<u>wldai@cadence.com</u>) Brad Brim (<u>bradb@sigrity.com</u>) assisted by Eiji Fujine Fujitsu VLSI Limited

Presented by: Dr. Wenliang Dai - Cadence


Asian IBIS Summit Shenzhen China November 9, 2010

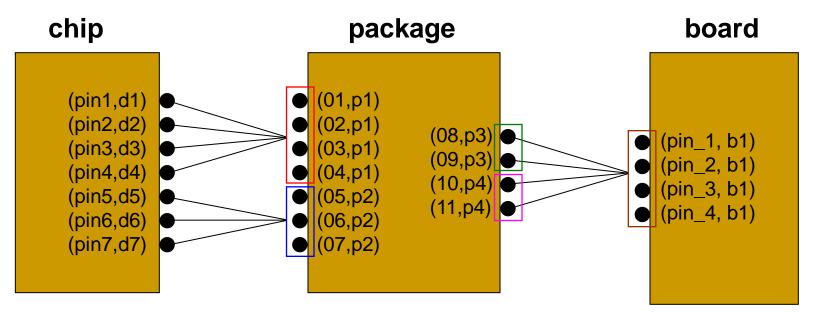
Agenda


- Why Model Connection Protocol
- Model Connection Protocol overview
- Extensions required for Mixed Signal SiP
- MCP Applications
- Summary

Why Model Connection Protocol - IC/Pkg/Board PDN Co-design

Design low impedance path: supply to chip

Why Model Connection Protocol - IC/Pkg/Board PDN Co-design


Why Model Connection Protocol

- IC/Pkg/Board PDN Co-design
- Chip/Package/Board have many physical connections
 - Chip-Package Boundary:100-6000
 - Package-Board Boundary: 100-3000
- Not all electrical nodes can have per-pin resolution
 - Models may become too large for computation, simulation
- Need way to group pins and auto-connect models across IC/Pkg/Board

MCP Overview

- Establish mapping

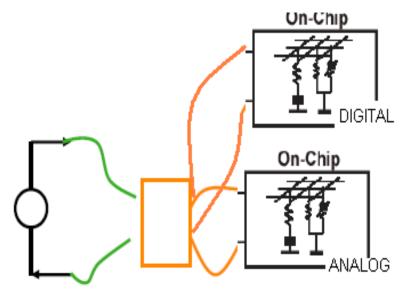
- Pin grouping and mapping
 - physical pin (of layout) to electrical node (of model) per Net
 - Mapping to connecting structure using physical location

Example of VDD net across chip-pkg-board

MCP Overview			
- Establish	mapping		
	.subckt <u>package</u> p1 p2 p3 p4 * [MCP Begin]		
	 * [MCP Ver] 1.1 * [Structure Type] PKG * [MCP Source] package extraction tool 		
.subckt <u>chip</u> d1 d2 d3 d4 d5 d6 d7 * [MCP Begin]	<pre>* [Coordinate Unit] um * [Connection] die1 myCPU 7</pre>		
* [MCP Ver] 1.1	* [Connection] diel mycro / * [Connection Type] DIE		
* [Structure Type] DIE	* [Power Nets]		
* [MCP Source] chip extraction tool	* 01 p1 VDD 0 0		
* [Coordinate Unit] um	* 02 p1 VDD 0 100		
* [Connection] pkg1 pkg bumps 7	* 03 p1 VDD 100 0		
* [Connection Type] PKG	* 04 p1 VDD 100 100		
* [Power Nets]	* 05 p2 VDD 50 0		
* pin1 d1 VDD 0 0	* 06 p2 VDD 50 50		
* pin2 d2 VDD 0 100	* 07 p2 VDD 50 100		
* pin3 d3 VDD 100 0	* [Connection] board1 my_board 4		
* pin4 d4 VDD 100 100	* [Connection Type] PCB		
* pin5 d5 VDD 50 0	* [Power Nets]		
* pin6 d6 VDD 50 50	* 08 p3 VDD 0 0		
* pin7 d7 VDD 50 100	* 09 p3 VDD 0 200		
* [MCP End]	* 10 p4 VDD 200 0		
SPICE elements	* 11 p4 VDD 200 200		
.ends * [MCP End]			
	SPICE elements		
	.ends		

Pins of net **Electrical node** Netname

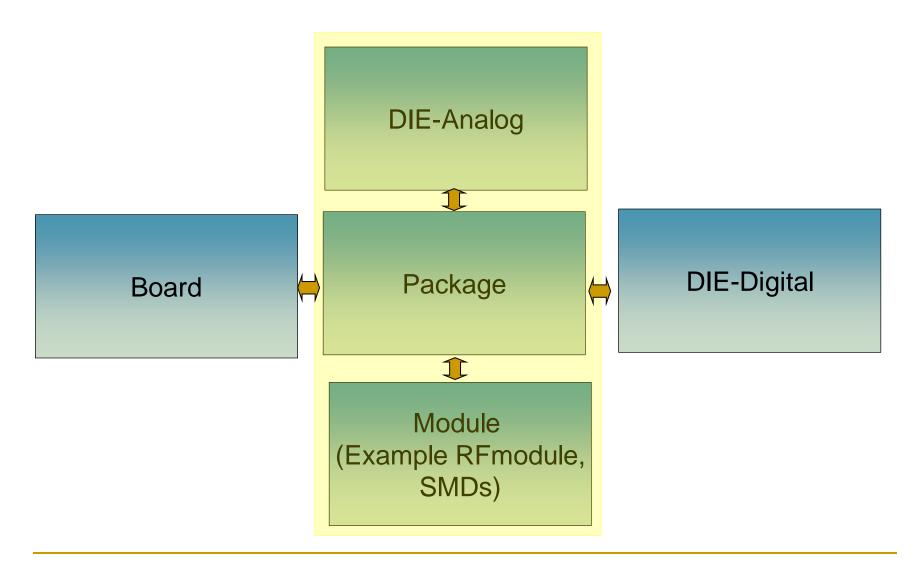
.subckt board bl

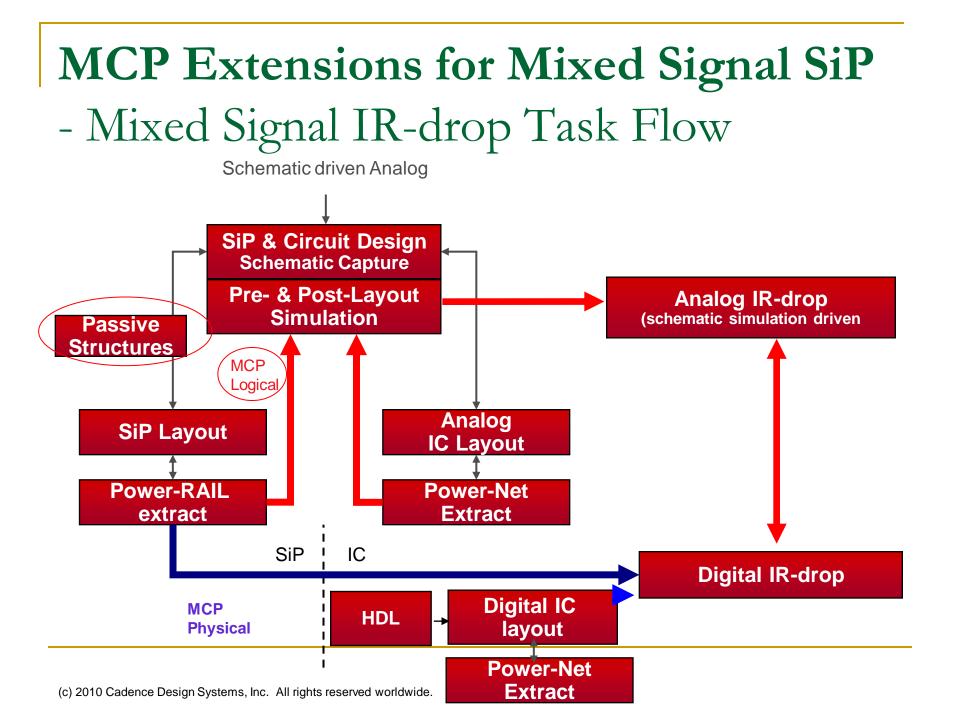

- * [MCP Begin]
- * [MCP Ver] 1.1
- * [Structure Type] PCB
- * [MCP Source] board extraction tool
- * [Coordinate Unit] mm
- * [Connection] pkg1 pkg balls 4
- [Connection Type] PKG *
 - [Power Nets]
- pin 1 b1 VDD 0.0 0.0
- pin 2 b1 VDD 0.0 0.2
- pin 3 b1 VDD 0.2 0.0
- * pin 4 b1 VDD 0.2 0.2
- * [MCP End]

```
--- SPICE elements ---
```

.ends

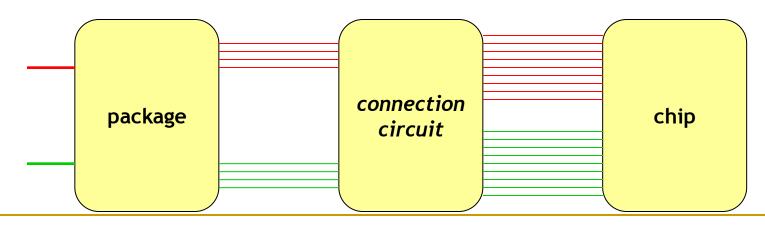
Example of VDD net across chip-pkg-board

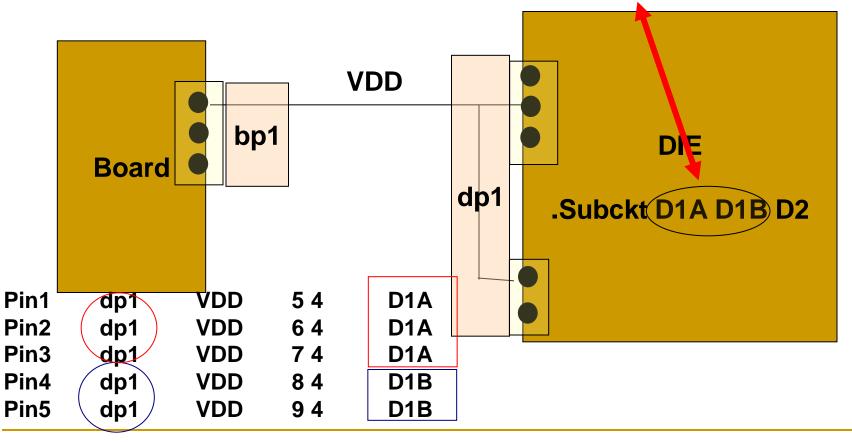

- Analyze power-delivery to ICs when Package rails supply power to
 - different ICs that could be digital and/or analog
 - RF-modules and Passive/Active SMDs
- Need Schematic driven Mixed Signal Simulations to process IR-drop at power-rails



PDN supplying Analog and Digital multi-DIE system

MCP Extensions for Mixed Signal SiP -Current MCP scope

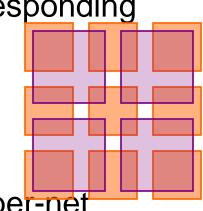



- Electrical connectivity of models with disparate pin grouping

- Support for mapping of different electrical port-groups across different structures
 - As an example
 - a package model with 2-by-2 grid-based pin grouping
 - a chip model with 3-by-3 grid-based pin grouping
 - desired is an electrical circuit to interface between an 8 node circuit and an 18 node circuit

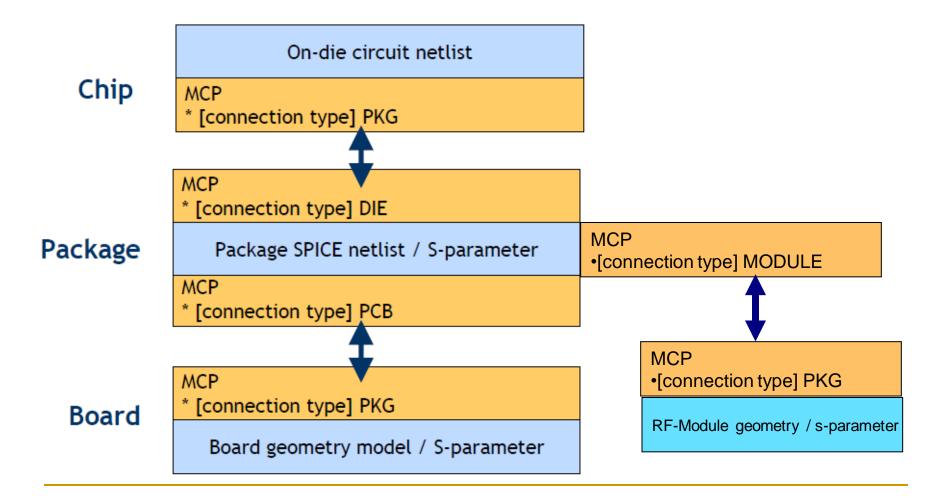
- Optional Column for mapping of electrical nodes across structures

Package: .Subckt bp1 dp1


- Caution: Electrical connectivity with disparate pin grouping

Examine the nodes of the each net

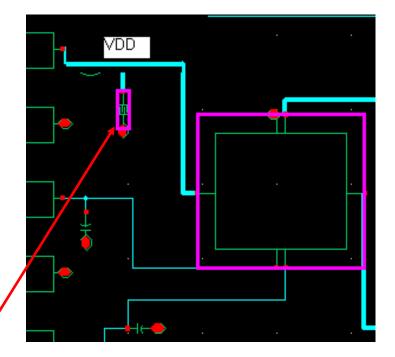
- for overlapping pin group domains, the corresponding nodes are shorted together
 - (1,1) node shorts together {(1,1), (1,2), (2,1), (2,2)} nodes
 - (1,2) node shorts together {(1,2), (1,3), (2,2), (2,3)} nodes
 - (2,1) node shorts together {(2,1), (2,2), (3,1), (3,2)} nodes
 - (2,2) node shorts together {(2,2), (2,3), (3,2), (3,3)} nodes
 alternately
 - (2,2) node shorts together {(1,1), (1,2), (2,1), (2,2)} nodes
- all nodes are shorted together, reducing to per-net connectivity
 - instead of 8 or 18 node electrical connectivity it is actually 2 node connectivity


Recommendation

- Connecting two disparately pin-grouped models is possible by choosing to short together electrical nodes that have overlapping pin domains
 - but it can reduce the effective resolution of the model at the chip/package interface
 - Useful in case of early debugging and quick connectivity

- Support for Modules as connect type structures
- Mixed Signal SiPs would have elements other that ICs like
 - RFmodules
 - Metal Passive structures
 - SMD components
 - Silicon Interposers
- These structure draw power impacting PDN loading and hence we need to support [Module] category besides IC, Package and Board

- Support for Modules as connect type structures

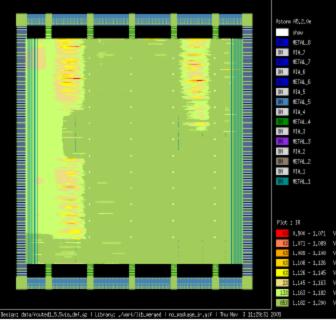


- Connection by Refdes besides X-Y location

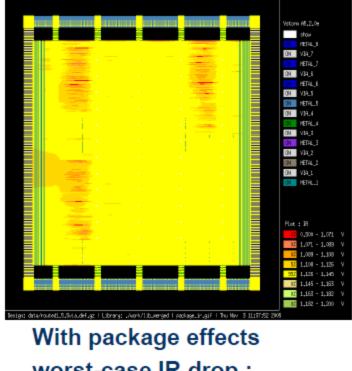
- In order to connect to structures that are SMD or metal-passive structures on SiP – usually a case for Mixed Signal SiP, it becomes difficult to connect by X-Y locations.
- Early analysis may require quick way of stitching the models across structures and minor placement or resolution changes can cause X-Y mapping to fail.
- Optional column showing connection by REFDES makes easy mapping for Mixed-Signal modules and early trials
 - Examples of connecting interfaces could be
 - IO-cellname (DIE IO)
 - R1:1 (pin 1 of R1)
 - CONN:1 (pin1 of PCB connector)
 - my_model_opamp:3 (port-3 of opamp subcircuit)

- Connection by Refdes besides X-Y location

- Simulating Analog DIE in package schematics with loading from passive structures connected to DIE
- The simulation data is postprocessed to obtain IR-drop at power-rails

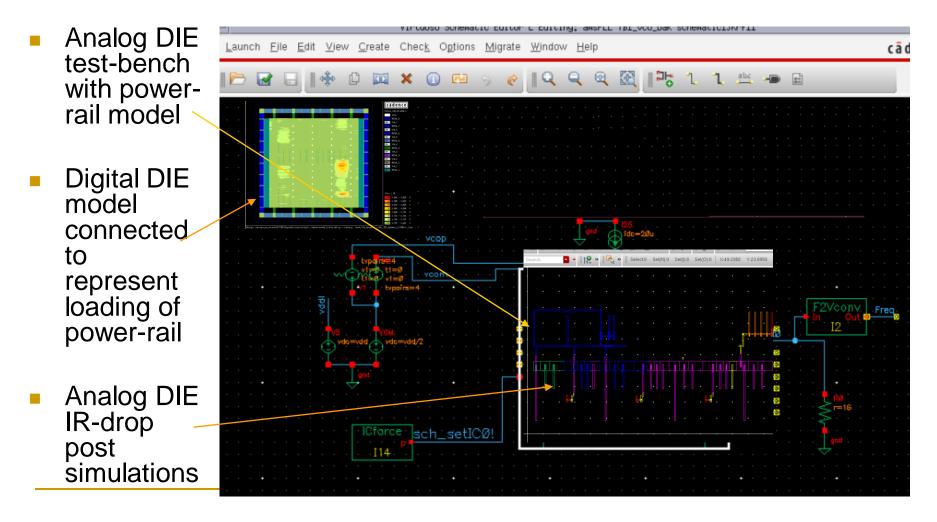


[connection type MODULE]			
Pin1	dp1	VDD	5 4
Pin2	dp1	VDD	6⁄4
Pin3	dp1	VDD	74


varistor1:2 //Reference_design:pin// varistor2:2

MCP applications: Digital DIE IR-drop - Digital DIE in context of package model

Simulation results of Vdd rail: Dynamic IR-Drop



Without package effects worst-case IR drop : 147.5mV

worst-case IR drop : 179.3mV

MCP applications: Analog DIE IR-drop -Analog DIE in context of package model & Digital DIEmodels

Summary: MCP format updated in context of Mixed Signal contents [MCP Ver] 1.1 * [Structure Type] {DIE | PKG | PCB } Device Info (self) * [MCP Source] source text Device Info (external) [Coordinate Unit] unit [Connection] connectionName (partName) numberPhysicalPins [Connection Type] {DIE|PKG|PCB} Module Connection Info * I/F part-ref [Power Nets] * I/F electrical column pinName modelNodeName netName x y node column * pinName modelNodeName * netName x v Ground Netsl * * pinName modelNodeName netName х y Pin Info * * pinName modelNodeName netName х v [Signal Nets] * pinName modelNodeName netName x v pinName modelNodeName netName x v [MCP End]

cādence[®]

