System-level Serial Link Analysis using IBIS-AMI Models

8000 00

> Uä 0

> > 0

000

00

0

0 Ö Uα

Ő

0

°Ŭo õ ŐggÖ

> õUõ ŐÖ

ŝŌ

õQõ ÔÔ 0

00%

ိ႐ိုဂို

ğü

0 0 8 0 0 0 0 0 0 0 0 0 0

၀၀၀ရွိ

,0°0°, 600

Ő,

0

άl

Todd Westerhoff, SiSoft twesterh@sisoft.com

Asian IBIS Summit Tokyo, Japan November 14, 2008

Agenda

- Serial Link Analysis
- IBIS Algorithmic Modeling Interface (IBIS-AMI)
- Network Characterization
- Statistical Analysis
- Time-Domain Analysis
- IBIS-AMI Simulation Performance
- Correlation
- Summary

SerDes Analysis Requirements

• User requirements

800

°Õ0

- Multi-million bit simulations
- Model specific SerDes IP
 - Equalization
 - Clock recovery
- Analyze channel & SerDes IP tradeoffs
- Support lab correlation (eye height/width, BER, etc.)
- SerDes vendor requirements
 - Protect SerDes IP
 - Single model supported in multiple EDA tools

Traditional SerDes Simulator Flow

Traditional SerDes Challenges

- SerDes vendor tools don't work together
 - Simulating cross-vendor links is difficult or impossible
- **Open-source tools lack IP vendor models**

Observation

800

- Most SerDes tools take S-parameter or pulse response data, then use signal-processing & statistical techniques to predict behavior
- A standardized SerDes analysis flow and model format would address both user & SerDes vendor issues

IBIS Algorithmic Modeling Interface (IBIS-AMI)

- Part of the approved IBIS 5.0 specification
- Divides SerDes simulation into two parts
 - Network characterization

800

- Determines impulse response for unequalized analog network
- Communications analysis
 - Models TX/RX equalization and clock recovery behavior
 - SerDes IP models are provided as executable code linked into the simulator at run time
- Standard mechanism for declaring model-specific parameters

SiSofi

IBIS-AMI Models

An IBIS-AMI model has two parts:

Analog Model

- Used to model behavior of the unequalized analog network (Network Characterization)
- TX: output impedance & parasitics
- **RX:** receiver input termination network & parasitics

Algorithmic Model

- Used to perform end to end link analysis including equalization and clock recovery behavior
- Models supplied as loadable object code
- Models can operate at two different levels:
 - **INIT:** impulse response processing
 - **GETWAVE:** time-domain waveform processing

Model-Specific Parameters

System Analysis with IBIS-AMI – Shanghai IBIS Summit – Nov 11, 2008

© 2008, SiSoft

iSoft Confidentia

6.25 Gbps Design Example

- Channel design questions
 - Which connectors?
 - Effect of tolerances?
 - Minimum link spacing?
 - **Back-drilling**?
 - Low-loss dielectric?
- SerDes IP questions
 - Equalization needed?
 - TX?
 - RX?
 - How many taps?
 - **RX DFE needed?**
 - Benefit of 8B10B encoding?

System Analysis with IBIS-AMI - Shanghai IBIS Summit - Nov 11, 2008

© 2008, SiSoft

Channel Model & Design Decisions

U O Å O U

5.0

Hertz (GH

Transfer Function over Process, Voltage, Temperature

6.0

7.0

8.0

9.0

- Analog circuit analysis includes TX output impedance/parasitics & RX input termination network
- Impulse response derived for use with algorithmic models
- Other network parameters may be extracted and displayed
 - S-parameters and transfer functions are shown in this example

SiSoft Confid

-50.07

-60.01

-70.01

1.0

2.0

3.0

8005

n

0

000

Ō

U Q

0

000

Uο

۱Ö

00

Q

0

0

0

00

٥ğn

0800

000

0 o

0

System Analysis with IBIS-AMI – Shanghai IBIS Summit – Nov 11, 2008

© 2008, SiSoft

Statistical Analysis

- Computes eye distributions / statistics directly
- Extremely fast over 10¹⁵ equivalent bits/second
- Models linear TX/RX equalization
- Conceptually similar to many proprietary tools, but with vendor-specific SerDes IP models

© 2008, SiSoft

SiSoft Confidentia

Optimizing Transmitter Tap Settings

Tap settings to be investigated

TX1:tap_filter1	Тар	AMI Range	0	-0.05		
TX1:tap_filter.0	Тар	AMI Range	1	.9	.8	.7
TX1:tap_filter.1	Тар	AMI Range	0	-0.1	-0.2	-0.3
TX1:tap_filter.2	Тар	AMI Range	0	-0.05		
TX1:tx_swing	Float	AMI Range	1.0			

64 permutations
Statistical Analysis

Symbol Rate (Gbps)	Stat BER	Tap_filter1	Tap_filter.0	Tap_filter.1	Tap_filter.2
6.25	1.19183E-35	-0.05	0.7	-0.3	-0.05
6.25	1.74231E-28	0	0.7	-0.3	-0.05
6.25	3.40168E-20	-0.05	0.8	-0.3	-0.05
6.25	6.15866E-15	-0.05	0.7	-0.3	0
6.25	3.49909E-09	0	0.8	-0.3	-0.05
6.25	5.60882E-06	0	0.7	-0.3	0
6.25	1.33183E-05	-0.05	0.9	-0.3	-0.05
6.25	0.000271654	-0.05	0.8	-0.3	0
6.25	0.000442811	-0.05	0.7	-0.2	-0.05
6.25	0.000837678	0	0.9	-0.3	-0.05
6.25	0.00247722	-0.05	1	-0.3	-0.05

BER vs. TX tap settings

System Analysis with IBIS-AMI – Shanghai IBIS Summit – Nov 11, 2008

© 2008, SiSoft

iSoft Confidentia

Copyright © 2008, SiSof

Time-Domain Analysis

- High-performance simulation
 ~1,000,000 bits/minute
- Models non-linear effects
 - Decision Feedback
 Equalization (DFE)
- Models time-varying behavior
 - Auto-adaptation
 - Detailed clock recovery
- Models different encoding schemes and impact of worstcase pattern sequences

Equalization Configurations

No EQ: BER=0.030 Eye Margin = 0mV

TX EQ only: BER=0 Eye Margin = 36.8mV

RX EQ only: BER=1.26e-018 Eye Margin = 26.4mV

TX & RX EQ: BER=0 Eye Margin = 50.8mV

System Analysis with IBIS-AMI - Shanghai IBIS Summit - Nov 11, 2008

© 2008, SiSoft

8000

δl

0

000

0

0.0

0.

άl

0

õUõõ 0°

> UΟ 0 (

00

Uāo

00

0. õ

0.

Ö

n o 00

õUU Ng

őÖ Uð 0

õÕ YOC 0 Ö 0

0

0

0 o

0

0 000

8 0 n

δŊŏ

0 0(

80800

0 v

)[°]ÕÕÕ(

0 U

0000

°000

0°0° 60°0

Ö. 0.

Ö

Modeling Adaptive Optimization

- RX DFE model includes adaptive equalization behavior, allowing model to optimize tap coefficients based on input data stream
- Model outputs internal state (tap settings) information as simulation progresses
- Tap behavior is saved in a format that can be loaded and displayed

Soft Confidentia

Copyright © 2008, SiSofi

Simulation Performance

Statistical Analysis

800

٥Õ٥

ງູ່ເວິ

- Simulating 10¹⁰⁰ equivalent bits takes under 2 seconds
- Hundreds of simulations can be run in a few minutes
- Time-Domain Analysis
 - Typical performance: 250K 1M bits/minute, depending on model complexity
 - 10 million bit simulations are practical, billion bit simulations are possible
- IBIS-AMI models provide 500-10,000x the performance of traditional SPICE-based simulation
- **IBIS-AMI** models provide equivalent simulation performance to proprietary SerDes simulation tools

System Analysis with IBIS-AMI - Shanghai IBIS Summit - Nov 11, 2008

SPICE to IBIS-AMI Correlation

8000

Õ Nº.

0

°.

Õ

ឹ្រ

0(

System Analysis with IBIS-AMI - Shanghai IBIS Summit - Nov 11, 2008

IBM HSSCDR to IBIS-AMI Correlation

0.

Őgogo

loooo

ŎŎŎŎ

Ŭñð

00

်၀ြန္ပံ ÕÕ

0

ů,

0

Õ Nº.

Summary

- Systems designers need high-performance, interoperable SerDes IP models
- **IBIS-AMI** models are interoperable (mix different vendor models) and transportable (models run in different EDA tools)
- IBIS-AMI models support statistical analysis and time-domain simulation at ~1,000,000 bits/minute
- IBIS-AMI models have been correlated against multiple reference simulation environments
- **IBIS-AMI** models are available now!

Additional Slides

0

SPICE/EDA Tool Correlation Process

0 N

ŝŏ 0

0

0 Ő

Õ

0°

0 0

ŝõ

õ

0