[IBIS Summit Tokyo, Japan November 14, 2008] THE POSSIBILITIES ARE INFINITE FILITS

Noise Countermeasure Design Technology for Signal and Power Integrity

November 14,2008

Toshiro Sato Circuit Technology Development Div. FUJITSU Advanced Technologies Ltd.

- 1. Background
- 2. Tasks
- 3. Countermeasures
- 4. LSI, PCB Unified Noise Analysis

1

- **5. Application Results**
- 6. Conclusions
- 7. Future Tasks

1. Background

Speed Up of Operating Frequency

1. Background

Lowering of Supply Voltage

2. Tasks

Emerging of Noise Problem

- Signal Integrity(SI)

 Reflection noise, Crosstalk noise
 Skin effect, Dielectric loss
 ISI: Inter Symbol Interference
 Power Integrity (PI, power noise)
 Simultaneous switching noise
 Voltage and ground bounce noise
 Noise caused by return current
- 3. EMC
 - (1) EMI
 - (2) ESD
- 4. Composite Noise

Complex noise problems composed of SI,PI and EMI/ESD etc.. Ex. Deterioration of cell phone antenna sensitivity

3. Countermeasures

Occurring principle of Power noise

•Power noise $: \Delta V = -Z(f) \times \Delta Ip$ •V/G Impedance $: Z(f) \leq \Delta V \max \angle \Delta Ip =$ Allowable Impedance

Equivalent Circuit of LSI, PCB and voltage supply

Tasks LSI,PCB Unified Noise Analysis

More Detailed Equivalent Circuit of LSI, PCB and voltage supply

LSI,PCB unified model is essential for high accuracy

9

High Speed Transmission Waveform Simulation with Power noise

This method significantly shortens the calculation time comparing to the full LSI,PCB Unified Analysis with the comparable accuracy.

Two typical operating flows

LSI design stage (Pre-simulation flow)

- Optimizing noise countermeasure design of LSI and PCB
 - LSI IO selection, Pin Layout, decoupling capacitor, PKG selection
 - PCB design conditions (layer configuration, topology, decoupling Capacitor)

LSI ,PCB design verification stage(Post-simulation flow)

- Noise verification of LSI and PCB taking account of mutual interference
 - Avoiding LSI remake、 Reducing PCB trial production
 - Reducing number of parts
 - Shortening design and evaluation term

Evaluation results of analysis accuracy

Accuracy of V/G noise analysis by evaluation LSI and PCB

Evaluation results of analysis accuracy

Accuracy of V/G noise analysis by evaluation LSI and PCB

Example of V/G Impedance Analysis

Results of V/G Impedance Analysis

V/G Impedance Calculation Results of Various PCBs

No.	PCB size (cm ²)	Number of PCB layer	Calculation time (HH:MM:SS)
1	106	6	0:01:24
2	43	6	0:26:19
3	1036	12	0:20:03
4	1398	12	3:08:13
5	1061	22	7:57:53
6	2184	22	25:07:02

V/G Impedance Analysis Using Floor Planner

Analysis Model

[Specification of Analyzed PCB]

PCB size	Number of
(c m ²)	PCB layer
180	10

[Using Floor Planner CAD Data]

[Using Layout CAD Data]

V/G Impedance Analysis Using Floor Planner

Power noise countermeasure from floor planning stage enables us to easily determine Power design constraint. (Decoupling capacitors,V/G layer construction,V/G layer partition)

Example of LSI, PCB Unified Noise Analysis

Example of LSI, PCB Unified Noise Analysis

V/G impedance analysis (without decoupling capacitors)

Example of LSI, PCB Unified Noise Analysis

V/G impedance analysis (with decoupling capacitors)

Example of LSI, PCB Unified Noise Analysis

6. Conclusion

- Fujitsu's LSI,PCB Unified Noise Analysis System were introduced and the effectiveness of the system were explained.
 - Further developments of the noise countermeasure design system to overcome the rapid advances of technology are scheduled.

7. Future Tasks

- The LSI,PCB Unified Noise Analysis Technology has been established as explained today. But, it is difficult to obtain the various LSI models available for power noise analysis (DDR,FPGA,ASIC,ASSP • • •).
- Sufficient supply of LSI power noise models are required.
- It is one of the most desirable solutions for this problem that the standard IBIS models available for power noise analysis are widely supplied by LSI vendors.
 - We hope IBIS Forum and JEITA will promote to establish the standard IBIS model for power noise analysis and spread it widely as a future task.

THE POSSIBILITIES ARE INFINITE