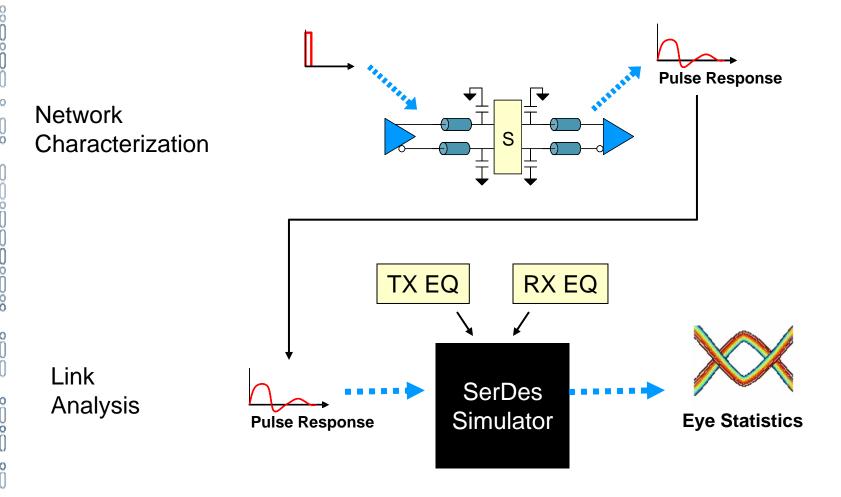
System-level Serial Link Analysis using IBIS-AMI Models

Todd Westerhoff, SiSoft twesterh@sisoft.com

Asian IBIS Summit Shanghai, China November 11, 2008

Agenda

- Serial Link Analysis
- IBIS Algorithmic Modeling Interface (IBIS-AMI)
- Network Characterization
- Statistical Analysis
- Time-Domain Analysis
- IBIS-AMI Simulation Performance
- Correlation
- Summary



SerDes Analysis Requirements

- User requirements
 - Multi-million bit simulations
 - Model specific SerDes IP
 - Equalization
 - Clock recovery
 - Analyze channel & SerDes IP tradeoffs
 - Support lab correlation (eye height/width, BER, etc.)
- SerDes vendor requirements
 - Protect SerDes IP
 - Single model supported in multiple EDA tools

Traditional SerDes Simulator Flow

Traditional SerDes Challenges

- SerDes vendor tools don't work together
 - Simulating cross-vendor links is difficult or impossible
- Open-source tools lack IP vendor models

Observation

- Most SerDes tools take S-parameter or pulse response data, then use signal-processing & statistical techniques to predict behavior
- A standardized SerDes analysis flow and model format would address both user & SerDes vendor issues

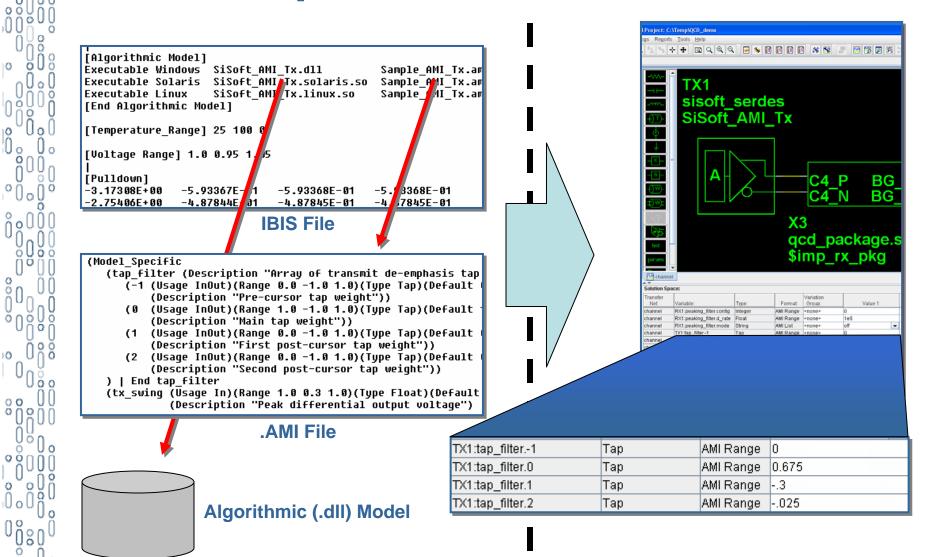
IBIS Algorithmic Modeling Interface (IBIS-AMI)

- Part of the approved IBIS 5.0 specification
- Divides SerDes simulation into two parts
 - Network characterization
 - Determines impulse response for unequalized analog network
 - Communications analysis
 - Models TX/RX equalization and clock recovery behavior
 - SerDes IP models are provided as executable code linked into the simulator at run time
- Standard mechanism for declaring model-specific parameters

IBIS-AMI Models

An IBIS-AMI model has two parts:

Analog Model

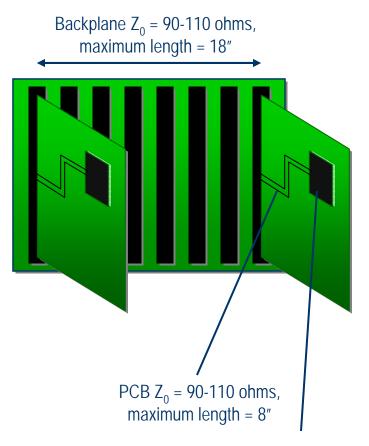

- Used to model behavior of the unequalized analog network (Network Characterization)
- TX: output impedance & parasitics
- RX: receiver input termination network & parasitics

Algorithmic Model

- Used to perform end to end link analysis including equalization and clock recovery behavior
- Models supplied as loadable object code
- Models can operate at two different levels:
 - INIT: impulse response processing
 - GETWAVE: time-domain waveform processing

Model-Specific Parameters

8


NOON NOON

Ŏ.

Ö

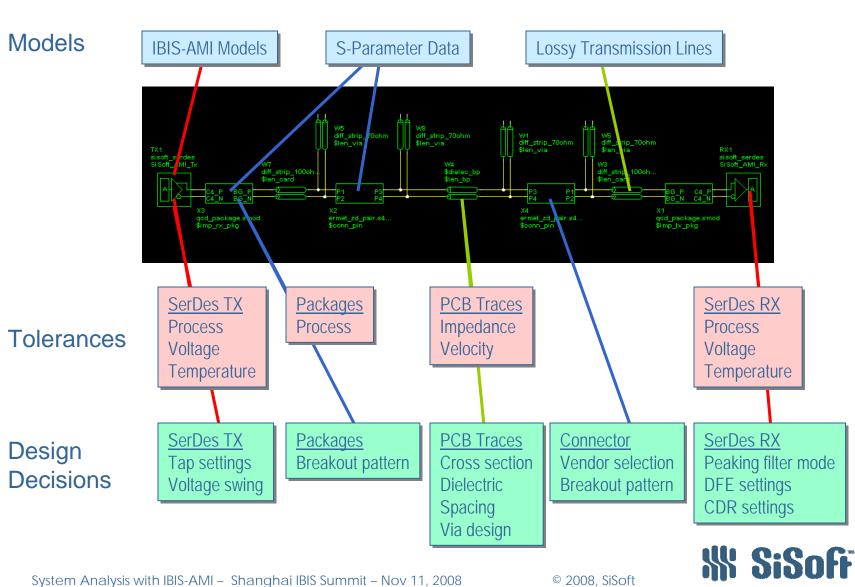
0.000

6.25 Gbps Design Example

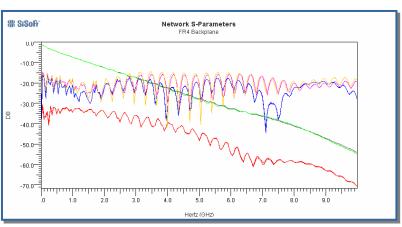
Package $Z_0 = 85-115$ ohms

- Channel design questions
 - Which connectors?
 - Effect of tolerances?
 - Minimum link spacing?
 - Back-drilling?
 - Low-loss dielectric?
- SerDes IP questions
 - Equalization needed?
 - TX?
 - RX?
 - How many taps?

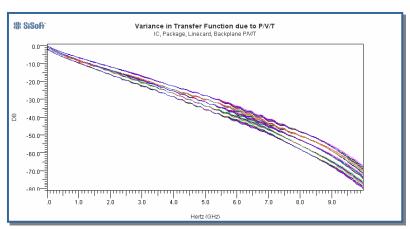
© 2008, SiSoft


- RX DFE needed?
- Benefit of 8B10B encoding?

SiSoff

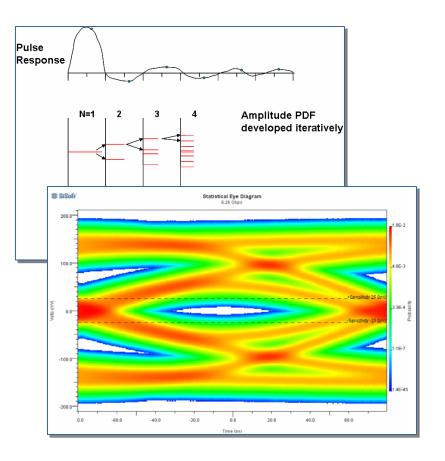

9

0 008 űzÖĞL š n š li š ğőő Ogeno


Channel Model & Design Decisions

Network Characterization

Channel S-Parameters



Transfer Function over Process, Voltage, Temperature

- Analog circuit analysis includes TX output impedance/parasitics & RX input termination network
- Impulse response derived for use with algorithmic models
- Other network parameters may be extracted and displayed
 - S-parameters and transfer functions are shown in this example

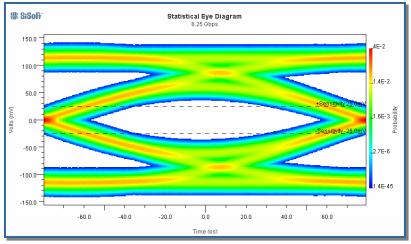
Statistical Analysis

- Computes eye distributions / statistics directly
- Extremely fast over 10¹⁵ equivalent bits/second
- Models linear TX/RX equalization
- Conceptually similar to many proprietary tools, but with vendor-specific SerDes IP models

© 2008, SiSoft

12

Optimizing Transmitter Tap Settings


Tap settings to be investigated

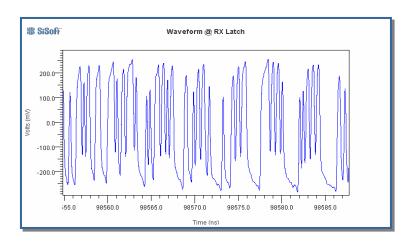
TX1:tap_filter1	Тар	AMI Range	0	-0.05		
TX1:tap_filter.0	Тар	AMI Range	1	.9	.8	.7
TX1:tap_filter.1	Тар	AMI Range	0	-0.1	-0.2	-0.3
TX1:tap_filter.2	Тар	AMI Range	0	-0.05		
TX1:tx_swing	Float	AMI Range	1.0			

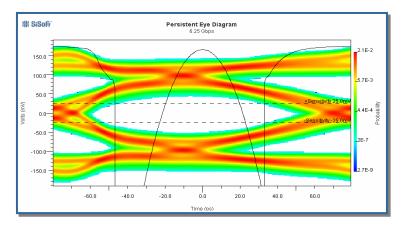
64 permutations

Statistical Analysis

Symbol Rate (Gbps)	Stat BER	Tap_filter1	Tap_filter.0	Tap_filter.1	Tap_filter.2
6.25	1.19183E-35	-0.05	0.7	-0.3	-0.05
6.25	1.74231E-28	0	0.7	-0.3	-0.05
6.25	3.40168E-20	-0.05	0.8	-0.3	-0.05
6.25	6.15866E-15	-0.05	0.7	-0.3	0
6.25	3.49909E-09	0	0.8	-0.3	-0.05
6.25	5.60882E-06	0	0.7	-0.3	0
6.25	1.33183E-05	-0.05	0.9	-0.3	-0.05
6.25	0.000271654	-0.05	0.8	-0.3	0
6.25	0.000442811	-0.05	0.7	-0.2	-0.05
6.25	0.000837678	0	0.9	-0.3	-0.05
6.25	0.00247722	-0.05	1	-0.3	-0.05

Statistical Eye @ RX

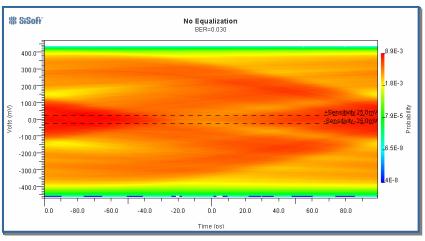

BER vs. TX tap settings


SiSoff

System Analysis with IBIS-AMI - Shanghai IBIS Summit - Nov 11, 2008

© 2008, SiSoft

Time-Domain Analysis



- High-performance simulation
 - ~1,000,000 bits/minute
- Models non-linear effects
 - Decision Feedback Equalization (DFE)
- Models time-varying behavior
 - Auto-adaptation
 - Detailed clock recovery
- Models different encoding schemes and impact of worstcase pattern sequences

Equalization Configurations

0

000

οno

0000

SiSoff

TX EQ Only
BER = 0

2.8E-2

8.4E-3

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

-50.0

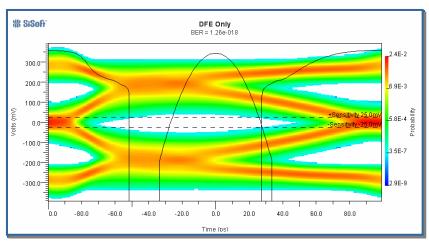
-50.0

-50.0

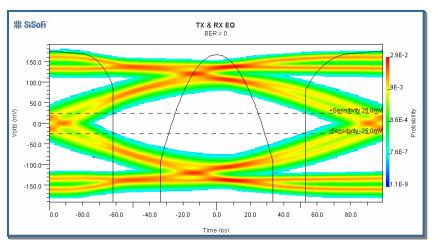
-50.0

-50.0

-50.0

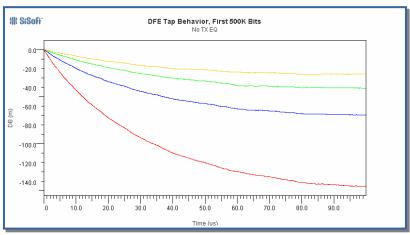

-50.0

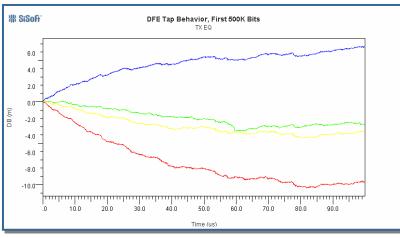
-50.0


-50.

No EQ: BER=0.030 Eye Margin = 0mV

TX EQ only: BER=0 Eye Margin = 36.8mV


RX EQ only: BER=1.26e-018 Eye Margin = 26.4mV


TX & RX EQ: BER=0 Eye Margin = 50.8mV

© 2008, SiSoft SiSoff

Modeling Adaptive Optimization

RX DFE Taps Without TX EQ

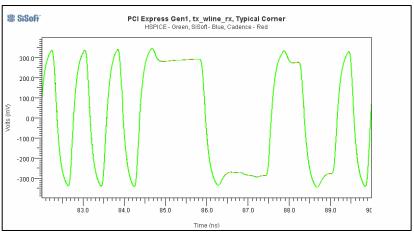
RX DFE Taps With TX EQ

- RX DFE model includes adaptive equalization behavior, allowing model to optimize tap coefficients based on input data stream
- Model outputs internal state (tap settings) information as simulation progresses
- Tap behavior is saved in a format that can be loaded and displayed

© 2008, SiSoft

System Analysis with IBIS-AMI – Shanghai IBIS Summit – Nov 11, 2008

SiSoft Confidential Copyright © 2008, SiSoft 16


Simulation Performance

- Statistical Analysis
 - Simulating 10¹⁰⁰ equivalent bits takes under 2 seconds
 - Hundreds of simulations can be run in a few minutes
- Time-Domain Analysis
 - Typical performance: 250K 1M bits/minute, depending on model complexity
 - 10 million bit simulations are practical, billion bit simulations are possible
- IBIS-AMI models provide 500-10,000x the performance of traditional SPICE-based simulation
- IBIS-AMI models provide equivalent simulation performance to proprietary SerDes simulation tools

© 2008, SiSoft

SPICE to IBIS-AMI Correlation

NOON NOON

Ö

000

ů ů ů ů ů

Ŏñã

0000

0080

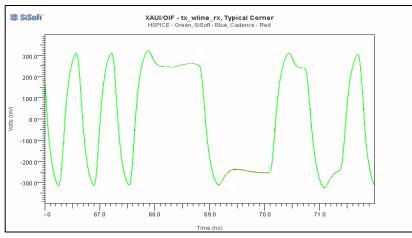
0

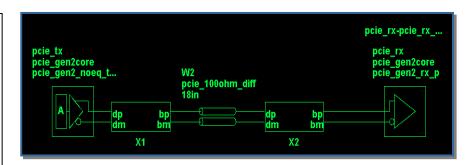
SiSoff

PCI Express Gen2 - tx_wline_tx, Tyical Corner
HSPICE - Green, SiSoft - Blue, Cadence - Red

200.0

100.0

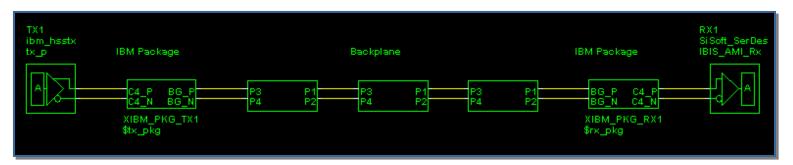

-200.0

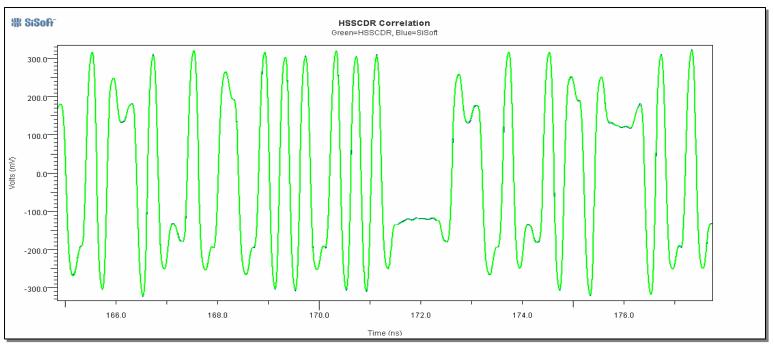

-200.0

Time (ns)

PCI Gen 1

PCI Gen 2


Green = SPICE, Blue = IBIS-AMI Where waveform is green, simulations match


IBIS-AMI and **SPICE** models provided by **IBM**

XAUI

0 000 00 0000 ÖÖÖÖ Ŏñã

IBM HSSCDR to IBIS-AMI Correlation

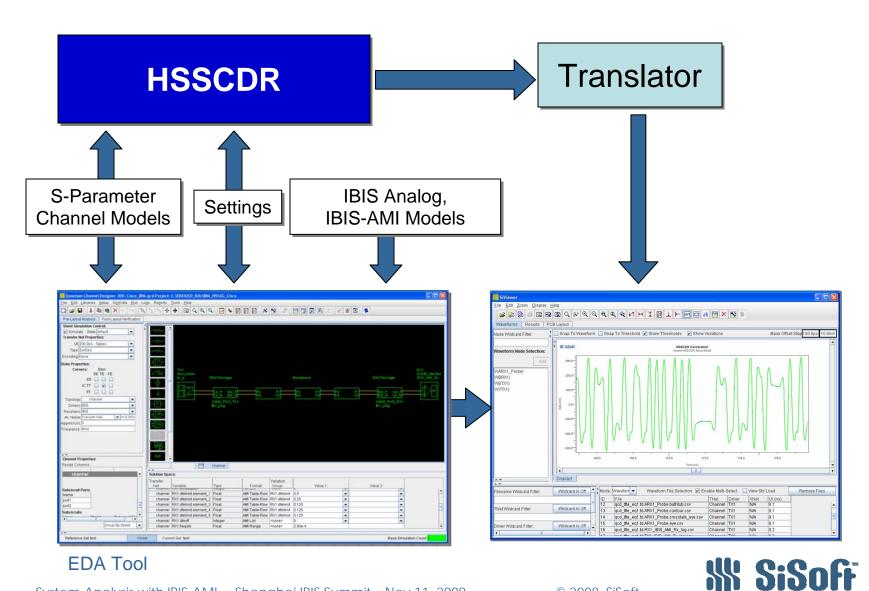
Green = HSSCDR results, Blue = EDA Tool results using IBIS-AMI models
Where waveform is green, results are identical

Summary

- Systems designers need high-performance, interoperable SerDes IP models
- IBIS-AMI models are interoperable (mix different vendor models) and transportable (models run in different EDA tools)
- IBIS-AMI models support statistical analysis and time-domain simulation at ~1,000,000 bits/minute
- IBIS-AMI models have been correlated against multiple reference simulation environments
- IBIS-AMI models are available now!

Additional Slides

0 Ogeno 0.000


SPICE/EDA Tool Correlation Process

IBIS Analog, IBIS-AMI Models IBIS-AMI Waveform **EDA Tool Test Pattern** Reference TX Model with **RX Model** Channel EQ = ON Model Waveform **SPICE** Analysis

HSSCDR Correlation Methodology

