

Optimum Frequency Sampling in S-Parameter Extraction and Simulation

Jinghua Huang (jhhuang@synopsys.com) SYNOPSYS Asian IBIS Submit Shanghai, China Nov. 11, 2008

Agenda

- Issues in S-parameter creation (model generation strategies)
- Handling bad S-parameters (simulation strategies)
- Tools to check S-parameter quality

Agenda

- Issues in S-parameter creation (model generation strategies)
- Handling bad S-parameters (simulation strategies)
- Tools to check S-parameter quality

S-parameter creation

- Suppliers often ship S-parameter representations of their product (package, connector, amplifier, etc.)
- S-parameter models are extracted by test and measurement equipment or by numerical methods (*i.e.*, simulation)

Issues in S-parameter creation

- S-parameter "table" model typically shows its weakness when...
 - Limited frequency range coverage
 - DC point absent
 - Coarse sampling
 - Unintentional non-passivity
 - Especially with bad terminations
 - Measurement noise
 - etc…

Influence on simulation results

- Frequency domain accuracy verification (AC analysis)
 - Key point: get required frequency point from provided S-parameter table model using inter-/extrapolation method.
- Time domain accuracy verification (Transient analysis)
 - Key point: Get time domain impulse response h(t) and do convolution

Key points in obtaining h(t)

- IFFT
 - Equally spaced 2^N points needed
 - Need to cover wide enough frequency range, from DC to several harmonics of input signal
- Rational Function Approximation
 - Delay extraction
 - Sampling and start pole determination
 - Avoid measurement noise

Accurately obtaining not-given S-parameters from the table model is extremely important to simulation results!

AC analysis example (sparse vs. dense)

Sparse: narrow range, few samples
 ac lin 101 1e6 10e9

Dense: wide range, lots of samples

.ac dec 301 1 30e9

AC verification results: 1 MHz - 60 GHz

Magnitude vs Frequency (1 MHz - 60 GHz)

Absolute Diff (1 MHz - 10 GHz)

Sparse S Model issues in AC Sparse S Model: 1 MHz - 10 GHz

AC verification test bench specified fstop of 60 GHz

Transient response - 3 GHz Pulse

Transient waveform

Absolute Diff

What does "good" S-parameter look like?

- Provide DC point
- Covers wide enough frequency range
 - From DC to several harmonics of input signal
- Necessary dense data point (but not too dense to avoid big data files)
- Passive, within the unit circle in Smith Chart
- Smooth, without measurement noise
- etc...

Agenda

- Issues in S-parameter creation (model generation strategies)
- Handling bad S-parameters (simulation strategies)
- Tools to check S-parameter quality

Using bad S-parameters?

- S-parameter "table" model typically shows its weakness when...
 - Limited frequency range coverage
 - DC point absent
 - Coarse sampling
 - Unintentional non-passivity
 - Especially with bad terminations
 - Measurement noise
 - etc...
- Can we use this kind of S-parameters if they are provided?

Guessing not-given values

Interpolation & extrapolation

- Piecewise constant
- Piecewise linear
- Spline
- Partially apply rational function approximation
- Hybrid method
- etc...

Base data format

- Real/Imaginary(RI)
- Magnitude/Angle(MA)
- etc...

Physical modeling (guess) based on provided table model!!

Interpolation method comparison

Inter- /extrapolation method	Numerical polynomial approximation (Piecewise constant, linear, spline, etc.)	Partially apply rational function approximation	Hybrid method
Advantages	. Quick . Bounded error	. Consider causality . Accurate phase estimation	. Combing advantages of several methods
Disadvantages	. Causality & passivity issue. Phase estimation difficulties	. Time consuming. Passivity violation. Noise sensitive	False switchbetween eachmethodNoise sensitive
Suggestions	Efficient for most common cases	Usually used in hybrid method	Use for cases with local resonances

Interpolation method comparison

Base data format	Real/Imaginary(RI)	Magnitude/Angle(MA)
Advantages	. No phase over- estimation issue in local resonance region	. Smooth curves connecting given sample points (more physical)
Disadvantages	. May under-estimate phase information . Straight line between given sample points (unphysical)	. May over-estimate phase change in local resonance region
Suggestions	use with very dense table model	Efficient for most cases

RI v.s. MA (linear) interpolation

- Real/Imaginary
 - Straight line
- Magnitude/Angle
 - Circled
 - Suitable for linear systems
 - Requires unwrapped phase guess
 - Clockwise assumption

Local resonances

Turning clockwise locally, looks counter-clockwise globally

Hybrid interpolation

- Combine possible best ways
 - Advantage of MA based interpolation
 - Capture local resonances
 - Finding local centers
 - Use rational functions

Noise reduction

Data smoothing functions

Passivity check/enforcement

- Passivity violation makes unintentional oscillator
 - Voltage blows up
- Passivity checker
 - Check eigenvalues of I-SS' (S': conjugate transpose)
- Passivity enforcement
 - "modify" original parameters
 - Add minimum amount of constant loss

Agenda

- Issues in S-parameter creation (model generation strategies)
- Handling bad S-parameters (simulation strategies)
- Tools to check S-parameter quality

How to select proper inter-/extrapolation method?

- Check your given S-parameter table model on Smith Chart
- Determine which method and what data format should to be used for inter-/extrapolation
- Check what you get from the selected inter-/extrapolation S-parameter data on Smith Chart

What does good S-parameter look like?

Good quality
S-parameters
always show
beautiful
curves on
Smith Chart!

SYNOPSYS®

Predictable Success