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Blackbox Macromodeling
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Objective:
Perform time-
domain
simulation of
composite
network to
determine
timing
waveforms,
noise response
or eye diagrams




Advantages of Macromodels

* Protect intellectual property (IP)
* Reduce complexity (fewer poles, fewer ports)

* Capture frequency dependence




Interconnect/Macromodel

Modeling Strategies
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Model Order Reduction

Objective: Approximate frequency-domain
transfer function to take the form:

(@)= {A'+Zl+ jo/ o, }

Methods

* AWE — Pade
* Pade via Lanczos (Krylov methods)
* Rational Function

* Chebyshev-Rational function
* Vector Fitting Method




Model Order Reduction (MOR)

Question: Why use a rational function approximation?

Answer: because the frequency-domain relation

Y(o)=H(o)X(o)=

X(@)

will lead to a time-domain recursive convolution:

where

Vo () = ax(t=T)(1—e " )+e Ty, (t-T)
which is very fast!

y(t) = dx(t—T)+Zypk (t)




State-Space Representation

The State space representation of the transfer
function is given by

%(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)
The transfer function is given by

S(s)=C(sl -A) B+D

A, B, C and D are constructed from poles and residues




Looking Forward
Machine Learning for Macromodeling

e S-parameter feed forward neural network (SFNN) works
like an auto encoder

— No need to prepare pole/residue for training. It trains on the input it
sees itself.

— This is the beginning for GAN (Generative Adversarial Networks) for
stochastic modeling.
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Looking Forward
Machine Learning for Buffer Modeling
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Looking Forward
Machine Learning for Buftfer Modeling
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Heat Map of X-Parameters

One-port X-parameter data is vectorized
for all types and all frequencies and
mapped to two-dimensional image
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Looking Forward
Machine Learning for Buffer Modeling

X-parameter for IBIS generation

* X-parameter as in the neural network’s eye




Looking Forward
Machine Learning for Buffer Modeling

X-parameter for IBIS generation

« X parameter for static IBIS curve is
generated. .

- An unsupervised classification 883
algorithm (as simple as K-mean) is S
used to verify that pull-up and pull- RN
down data is separable.

« Watch out for potential outliers:
recollect data, unusual dynamic

(o]
nature between pull-up and pull bl Pull-up

down. ...

 Then the X-parameters of pull-up ,
or pull-down configurations and its X-parameter in separable hyperspace
corresponding static curves are
used to train a feed forward neural
network (FFN).
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Looking Forward
Machine Learning for Buffer Modeling

e Use importance sampling with assumed £2-norm error at ast 100 epoches

Gaussian distribution to bootstrap the . — anpaion
. . o e B0
result due to limited number of training N
samples. o]
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further investigations. “ m\\
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Looking Forward

Machine learning approach to extract poles
and residues

X-parameters for IBIS models

Machine learning and X parameters for IBIS

Volterra series expansion of X parameters



