IBIS-Compatible Macromodel and Interconnect Simulation Techniques

José E. Schutt-Ainé

University of Illinois at Urbana-Champaign

IBIS Summit May 25, 2018 Brest France

Interconnect Structures

Courtesy of http://www.ansoft.com/hfworkshop03/Weimin_Sun_Vitesse.pdf

Blackbox Macromodeling

Objective: Perform timedomain simulation of composite network to determine timing waveforms, noise response or eye diagrams

Advantages of Macromodels

- Protect intellectual property (IP)
- Reduce complexity (fewer poles, fewer ports)
- Capture frequency dependence

Interconnect/Macromodel Modeling Strategies

Model Order Reduction

Objective: Approximate frequency-domain transfer function to take the form:

$$H(\omega) = \left[A_1 + \sum_{i=1}^{L} \frac{a_{1i}}{1 + j\omega/\omega_{c1i}} \right]$$

Methods

- AWE Pade
- Pade via Lanczos (Krylov methods)
- Rational Function
- Chebyshev-Rational function
- Vector Fitting Method

Model Order Reduction (MOR)

Question: Why use a rational function approximation?

Answer: because the frequency-domain relation

$$Y(\omega) = H(\omega)X(\omega) = \left[d + \sum_{k=1}^{L} \frac{c_k}{1 + j\omega/\omega_{ck}}\right]X(\omega)$$

will lead to a time-domain recursive convolution:

$$y(t) = dx(t-T) + \sum_{k=1}^{L} y_{pk}(t)$$

where

$$y_{pk}(t) = a_k x(t-T) (1 - e^{-\omega_{ck}T}) + e^{-\omega_{ck}T} y_{pk}(t-T)$$

which is very fast!

State-Space Representation

The State space representation of the transfer function is given by

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

The transfer function is given by

$$S(s) = C(sI - A)^{-1}B + D$$

A, B, C and D are constructed from poles and residues

Looking Forward Machine Learning for Macromodeling

- S-parameter feed forward neural network (SFNN) works like an auto encoder
 - No need to prepare pole/residue for training. It trains on the input it sees itself.
 - This is the beginning for GAN (Generative Adversarial Networks) for stochastic modeling.

Heat Map of X-Parameters

% AN_1_1(real) FI_31(real) FB_1_1(complex) FB_1_2(complex) FB_1_3(complex)

One-port X-parameter data is vectorized for all types and all frequencies and mapped to two-dimensional image

X-parameter for IBIS generation

• X-parameter as in the neural network's eye

X-parameter for IBIS generation

- X parameter for static IBIS curve is generated.
- An unsupervised classification algorithm (as simple as K-mean) is used to verify that pull-up and pulldown data is separable.
- Watch out for potential outliers: recollect data, unusual dynamic nature between pull-up and pulldown.
- Then the X-parameters of pull-up or pull-down configurations and its corresponding static curves are used to train a feed forward neural network (FFN).

X-parameter in separable hyperspace

Looking Forward

Machine Learning for Buffer Modeling

- Use importance sampling with assumed Gaussian distribution to bootstrap the result due to limited number of training samples.
- Need more (a lot more) practical data for further investigations.

L2-norm error: ~ e-4

L2-norm error: ~ e-4

Voltage (V)

Looking Forward

- Machine learning approach to extract poles and residues
- X-parameters for IBIS models
- Machine learning and X parameters for IBIS
- Volterra series expansion of X parameters