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Outline 

 Context 

 Building a nonlinear Thévenin-like model for IC 

buffers 

 Demonstrating the approach on a TI driver 

 Discussing the implementation 

 Extending the model to account for vdd variations 

 Conclusion 
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Context 

Joint research on buffer modeling 
Politecnico di Torino, Italy and Université de Brest, France 

 

 

Focus:  

 New methodologies and approaches to IC buffer macromodeling 

 Better accuracy in critical conditions, more general approach to modeling 

 Particular focus on overclocking: issue present in literature, conferences and 

IBIS summit meetings 
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Nonlinear Thévenin-like model 

General idea presented at the IBIS Summit Meeting in 2013 

 

NEW! 

Implementation details for every block 

Extraction: full walkthrough  

Accounting for VDD variation  
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Nonlinear Thévenin-like model 

Example: Texas Instruments driver 

SN74ALVCH16973, VDD = 2,5V 
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Nonlinear Thévenin-like model 

OPEN CIRCUIT VOLTAGE 

 

Single-input-single-output nonlinear element  

Gives the input-output characteristic of the driver 

Can be modeled in different ways 



Nonlinear Thévenin-like model 
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OPEN CIRCUIT VOLTAGE 

 

Hammerstein structure (well known in control-theory) 

Static bloc: Step like function, table-based implementation 

Linear filter identified via vector fitting  

Delay modeled by ideal transmission line 
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Nonlinear Thévenin-like model 

OPEN CIRCUIT VOLTAGE 

 

Very accurate model using 

very simple and robust structure 

Dynamic elements could be 

added if needed 
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NMSE gives a measure of the accuracy 

over a finite number of samples K.  
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Nonlinear Thévenin-like model 

NONLINEAR CONDUCTANCE 

 

On state / off state separation 

Static table based model at this stage 
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Nonlinear Thévenin-like model 
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Relation with IBIS 
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Thévenin-like  

 

IBIS-like  

 
 
Static characteristics of the output port in high and low state 

Weighting functions computed from devices responses on two resistive loads 
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Relation with IBIS 
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Transient simulation results 
Td =0.1ns, Z0=60 

 

C = 7p 
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Transient simulation results 

Overclocking: 

solve a problem or 

solve the problem ? 

Thévenin model 

works, but why? 



Transient simulation results 

15/20 

Hybrid model: IBIS 

weighting functions 

driven through 

Hammerstein 

structure.  

Overclock problem 

solved but original 

Thévenin model has 

better dynamics. 
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Summing things up… 

Static table-based model here  

dynamic models: compensation 

capacitance, linear FIR, nonlinear 

model if needed 

 

 

Tables + Simple filter + delay 

 

 



Summing things up… 
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Spice simulation of transistor 

models 

Transient Analysis 

DC Analysis 

 

Driver 

open 

circuit 

Driver in 

open 

circuit 

GH,L 

Delay 

extraction 

d/dt 

FFT 

vector fitting 

Filter 

Static bloc 

Delay 

DC Analysis 

 1ê v

Driver locked on/off 

(output port analysis) 

Ohm’s law 



Summing things up… 
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Spice simulation of transistor 

models 

DC Analysis 

DC Analysis 

 

Driver 

open 

circuit 

Driver in 

open 

circuit 

GH,L 

Delay 

extraction 

d/dt 

FFT 

vector fitting 

Filter 

Static bloc 

Delay 

DC Analysis 

 1ê v

Driver locked on/off 

(output port analysis) 

Ohm’s law 

Straightforward implementation 

with off-the-shelf tools!  



Accounting for Vdd variation 
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Conclusion 

Top down approach: circuit theory  macromodel. 

Easy implementation. 

Basic building block for future EDA tools. 

Good potential in solving inaccuracies related to 

jitter, overclocking, etc. 
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