European IBIS Summit Meeting

May 11th 2016, Turin, Italy

Models for IC Buffers: A Top-down Approach

Taking the nonlinear Thévenin-like topology beyond the proof of concept

C. Diouf¹, <u>M. Telescu²</u>, N.Tanguy², I.S. Stievano³, F.G. Canavero³

¹Ecole Nationale d'Ingénieurs de Brest, CNRS, UMR 6285, Lab-STICC ²Université de Brest; CNRS, UMR 6285, Lab-STICC ³Politecnico di Torino, Department of Electronics and Telecommunications, EMC Group

Outline

- Context
- Building a nonlinear Thévenin-like model for IC buffers
- Demonstrating the approach on a TI driver
- Discussing the implementation
- $_{\rm O}$ Extending the model to account for $v_{\rm dd}$ variations
- Conclusion

Context

Joint research on buffer modeling

Politecnico di Torino, Italy and Université de Brest, France

Focus:

- New methodologies and approaches to IC buffer macromodeling
- Better accuracy in critical conditions, more general approach to modeling
- Particular focus on <u>overclocking</u>: issue present in literature, conferences and IBIS summit meetings

➤ General idea presented at the IBIS Summit Meeting in 2013

NEW!

Implementation details for every block

Extraction: full walkthrough

➤Accounting for V_{DD} variation

Example: Texas Instruments driver SN74ALVCH16973, VDD = 2,5V

OPEN CIRCUIT VOLTAGE

Single-input-single-output nonlinear element
 Gives the input-output characteristic of the driver
 Can be modeled in different ways

OPEN CIRCUIT VOLTAGE

Hammerstein structure (well known in control-theory)
 Static bloc: Step like function, table-based implementation
 Linear filter identified via vector fitting
 Delay modeled by ideal transmission line

OPEN CIRCUIT VOLTAGE

 Very accurate model using very simple and robust structure
 Dynamic elements could be added if needed

NMSE =
$$10\log_{10} \frac{\sum_{k=0}^{K-1} (y_{ref}(k) - y_{approx}(k))^2}{\sum_{k=0}^{K-1} (y_{ref}(k))^2}$$

NMSE gives a measure of the accuracy over a finite number of samples K.

eme group

Lab⁻STICC

NONLINEAR CONDUCTANCE

On state / off state separationStatic table based model at this stage

$$G(v_1, v_2) = \left[\hat{e}(v_1) / V_{DD}\right] G_H(v_2) + \left[\left(1 - \hat{e}(v_1)\right) / V_{DD}\right] G_L(v_2)$$

= $\widetilde{w}_H G_H(v_2) + \widetilde{w}_L G_L(v_2)$

Relation with IBIS

Thévenin-like

$$i_{2}(t) = G(v_{1}, v_{2})[\hat{e}(v_{1}) - v_{2}]$$

$$= [(\hat{e}(v_{1})/V_{DD})G_{H}(v_{2}) + ((1 - \hat{e}(v_{1}))/V_{DD})G_{L}(v_{2})][\hat{e}(v_{1}) - v_{2}]$$

$$= [\widetilde{w}_{H}G_{H}(v_{2}) + \widetilde{w}_{L}G_{L}(v_{2})][\hat{e}(v_{1}) - v_{2}]$$

$$= \widetilde{w}_{H}[\hat{e}(v_{1}) - v_{2}]G_{H}(v_{2}) + \widetilde{w}_{L}[\hat{e}(v_{1}) - v_{2}]G_{L}(v_{2})$$

$$= \widetilde{w}_{H}\widetilde{f}_{H}(v_{1}, v_{2}) + \widetilde{w}_{L}\widetilde{f}_{L}(v_{1}, v_{2})$$
IBIS-like

$$i_{2}(t) = w_{H}f_{H}(V_{DD} - v_{2}) + w_{L}f_{L}(v_{2})$$

Static characteristics of the output port in high and low state

>Weighting functions computed from devices responses on two resistive loads

Relation with IBIS

Thévenin-like

$$i_{2}(t) = G(v_{1}, v_{2})[\hat{e}(v_{1}) - v_{2}]$$

$$= [(\hat{e}(v_{1})/V_{DD})G_{H}(v_{2}) + ((1 - \hat{e}(v_{1}))/V_{DD})G_{L}(v_{2})][\hat{e}(v_{1}) - v_{2}]$$

$$= [\widetilde{w}_{H}G_{H}(v_{2}) + \widetilde{w}_{L}G_{L}(v_{2})][\hat{e}(v_{1}) - v_{2}]$$

$$= \widetilde{w}_{H}[\hat{e}(v_{1}) - v_{2}]G_{H}(v_{2}) + \widetilde{w}_{L}[\hat{e}(v_{1}) - v_{2}]G_{L}(v_{2})$$

$$= \widetilde{w}_{H}\widetilde{f}_{H}(v_{1}, v_{2}) + \widetilde{w}_{L}\widetilde{f}_{L}(v_{1}, v_{2})$$
IBIS-like

$$i_{2}(t) = w_{H}f_{H}(V_{DD} - v_{2}) + w_{L}f_{L}(v_{2})$$

In the Thévenin-like model both $\tilde{w}_{H,L}$ and $\tilde{f}_{H,L}$ depend on v_1 In the IBIS-like model only $w_{H,L}$ depend on v_1

Transient simulation results

Transient simulation results

Overclocking: solve a problem or solve the problem ?

Transient simulation results

Summing things up...

Tables + Simple filter + delay

Static table-based model here → dynamic models: compensation capacitance, linear FIR, nonlinear model if needed

Summing things up...

: emc group

Summing things up...

emc orou

Accounting for Vdd variation

Conclusion

Top down approach: circuit theory → macromodel.
Easy implementation.
Basic building block for future EDA tools.
Good potential in solving inaccuracies related to jitter, overclocking, etc.

References:

Conference paper : C. Diouf, M. Telescu , N. Tanguy, I.S. Stievano, F.G. Canavero, "Robust nonlinear models for CMOS buffers", 20th IEEE Workshop on Signal and Power Integrity, May 2016, Turin, taly *Extended paper:* C. Diouf, M. Telescu, I. S. Stievano, N. Tanguy, F. G. Canavero, "Simplified topology for IC buffer behavioural models", IET Circuits, Devices & Systems, 2016 (in press).

