Time Response Utility

Bob Ross, Teraspeed Labs bob@teraspeedlabs.com

European IBIS Summit Berlin, Germany, May 13, 2015

(Presented by Anders Ekholm, Ericsson)

Copyright 2015 Teraspeed Labs

Notation and Introduction

Laplace Transform

Differential Equation

$$X(s) = \frac{a_{n-1}s^{n-1} + \dots + a_0}{s^n + b_{n-1}s^{n-1} + \dots + b_0},$$

$$x^n(t) + b_{n-1}x^{n-1}(t) + \dots + b_0x(t) = 0$$

initial conditions, $x(0), \dots, x^{n-1}(0)$,

Utility calculates and displays immediately 101 points for $x^i(t)$, i=0 to i=26 for the time response and all of its derivatives

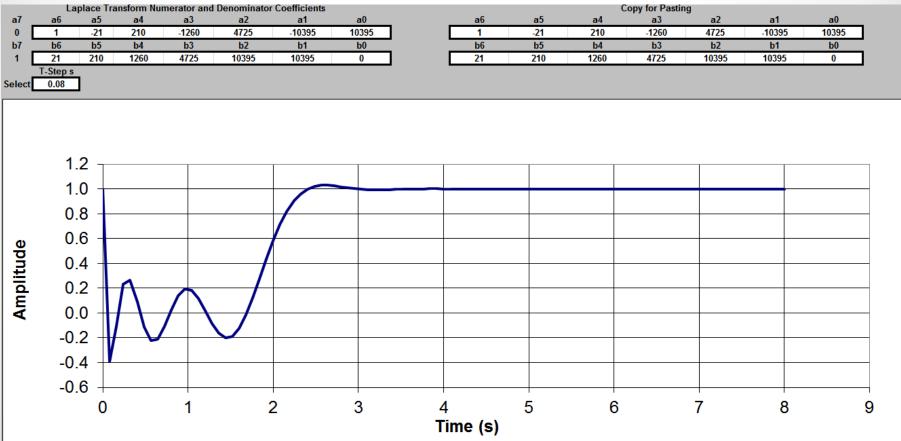
Extended for more time points by copying and pasting last row

Can be used as an embedded utility involving other Laplace Transform calculations

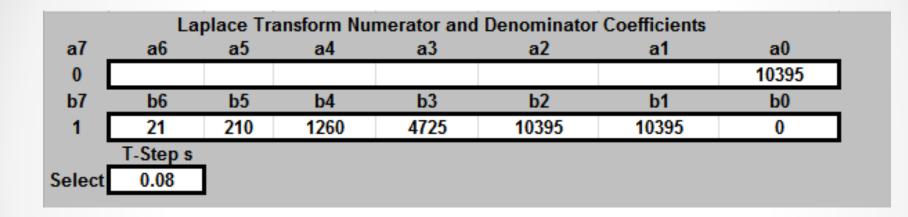
Enter Laplace Transform Num. and Den. Coefficients and Time-Step

Laplace Transform Numerator and Denominator Coefficients								
a7	a6	a5	a4	a3	a2	a1	a0	
0	1	-21	210	-1260	4725	-10395	10395	
b7	b6	b5	b4	b3	b2	b1	b0	
1	21	210	1260	4725	10395	10395	0	
T-Step s								
Select 0.08								
		-						

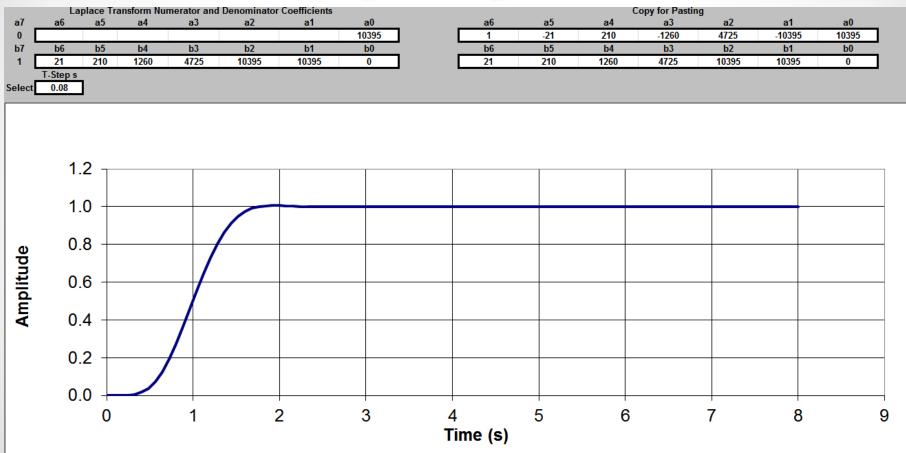
Step Response of 6th order Bessel (maximally flat envelope delay, MFED) all-pass function


Change time-step to zoom-in or zoom-out and to change resolution

The graph auto-scales over 101 points

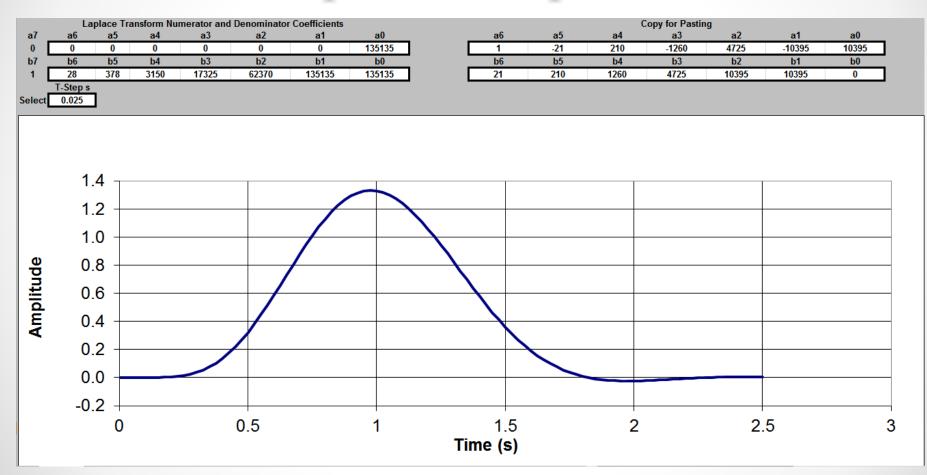

Copyright 2015 Teraspeed Labs

6th Order MFED All-Pass Step Response


6th Order MFED Low-Pass Step Response Input

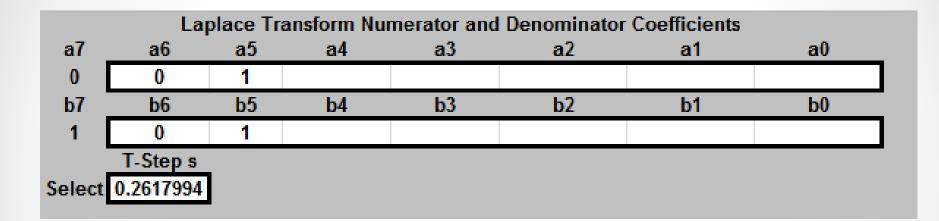
Convert all-pass to low-pass filter by zeroing out numerator coefficients (click/back-space or enter 0) for real-time modification

6th Order MFED Low-Pass Step Response



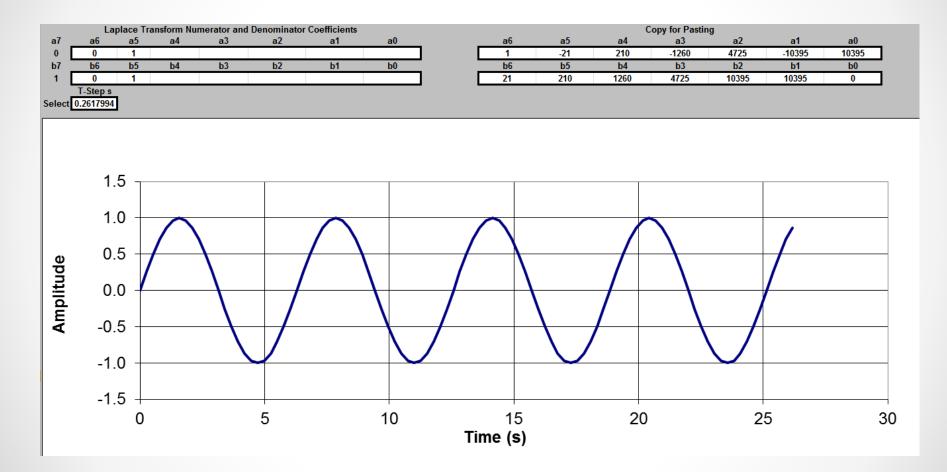
7th Order MFED Low-Pass Impulse Response Input

Laplace Transform Numerator and Denominator Coefficients								
a7	a6	a5	a4	a3	a2	a1	a0	
0	0	0	0	0	0	0	135135	
b7	b6	b5	b4	b3	b2	b1	b0	
1	28	378	3150	17325	62370	135135	135135	
T-Step s Select 0.025								
Select	0.023							



7th Order MFED Low-Pass Impulse Response

X(s) = 1/(s² + 1) Sine Wave with Left-Shifted Coefficients

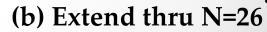


Set Time-Step =PI()/12 for exact $\pi/12$ (15 degree) steps

Can compare response with exact solution: $x(t) = sin(\pi t/12)$

Sine Wave Response

Recursive Taylor Series Method (Repeat b and c) a) Initialize: i = 1, ..., n-1(n = 7) $x(0) = a_{n-1} \qquad x^{i}(0) = a_{n-1-i} - \sum_{j=0}^{i-1} b_{n-i-j} x^{j}(0)$ b) Extend: $i = n, \dots, p$ (p = 26) $x^{i}(t) = -\sum_{i=0}^{n-1} b_{i} x^{i-n-j}(t)$ c) Next time step: i = 0, ..., n-1 (Taylor Series) $x^{i}(t+T) = \sum_{j=i}^{p} x^{j}(t) \frac{T^{j-i}}{(i-i)!}$


R. I. Ross, "Evaluating the Transient Response of a Network Function," Proc. IEEE, vol.55, pp. 615-616, May 1967

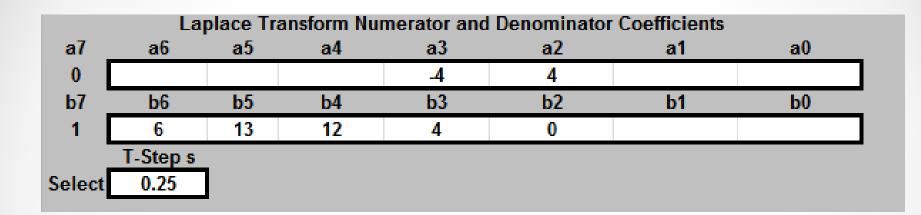
Spread Sheet Details

Copy for Pastin a4 a3
210 -1260
b4 b3
1260 4725
<u></u>
Sheet
9 10
59204E-11 4.16796E-13
9 10
000E+00 0.000E+00
.659E-01 -2.588E-01
.660E-01 -5.000E-01
.071E-01 -7.071E-01
.000E-01 -8.660E-01
.588E-01 -9.659E-01
.342E-16 -1.000E+00
.588E-01 -9.659E-01
.000E-01 -8.660E-01
.071E-01 -7.071E-01
.660E-01 -5.000E-01
\longrightarrow

(c) x(t+T) Taylor Series for new row

Accurate Time Response for $X(s) = 1/(s^2 + 1); x(t) = sin(\pi t/12)$

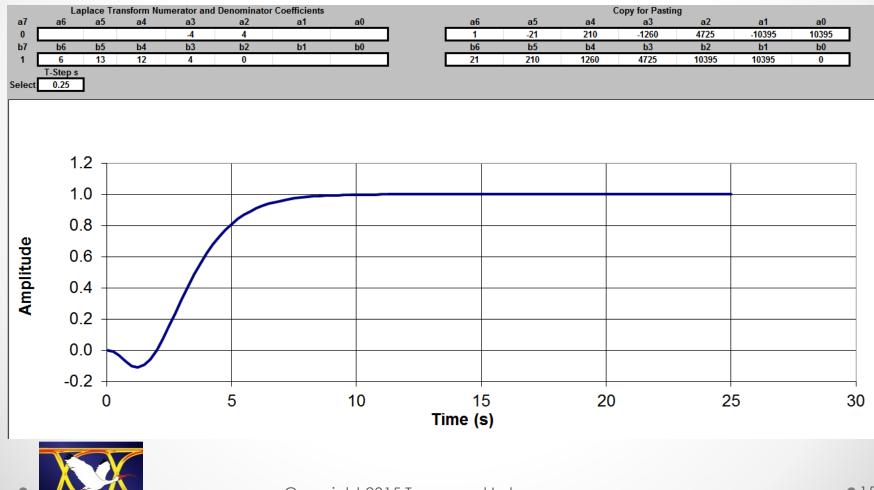
	Х	Y	Z	AA	AB	AC
103	-1.05412673E-14	1.00000000E+00	1.05412673E-14	-1.0000000E+00	-1.05412673E-14	1.00000000E+00
104	2.58819045E-01	9.65925826E-01	-2.58819045E-01	-9.65925826E-01	2.58819045E-01	9.65925826E-01
105	5.0000000E-01	8.66025404E-01	-5.0000000E-01	-8.66025404E-01	5.0000000E-01	8.66025404E-01
106	7.07106781E-01	7.07106781E-01	-7.07106781E-01	-7.07106781E-01	7.07106781E-01	7.07106781E-01
107	8.66025404E-01	5.0000000E-01	-8.66025404E-01	-5.00000000E-01	8.66025404E-01	5.00000000E-01
108	9.65925826E-01	2.58819045E-01	-9.65925826E-01	-2.58819045E-01	9.65925826E-01	2.58819045E-01
109	1.00000000E+00	1.10769747E-14	-1.0000000E+00	-1.10769747E-14	1.00000000E+00	1.10769747E-14
110	9.65925826E-01	-2.58819045E-01	-9.65925826E-01	2.58819045E-01	9.65925826E-01	-2.58819045E-01
111	8.66025404E-01	-5.00000000E-01	-8.66025404E-01	5.00000000E-01	8.66025404E-01	-5.00000000E-01
112	7.07106781E-01	-7.07106781E-01	-7.07106781E-01	7.07106781E-01	7.07106781E-01	-7.07106781E-01
113	5.0000000E-01	-8.66025404E-01	-5.00000000E-01	8.66025404E-01	5.0000000E-01	-8.66025404E-01


Iterative calculation = exact response to 9 digits

- up to 101 data points
- up to the 26th derivative

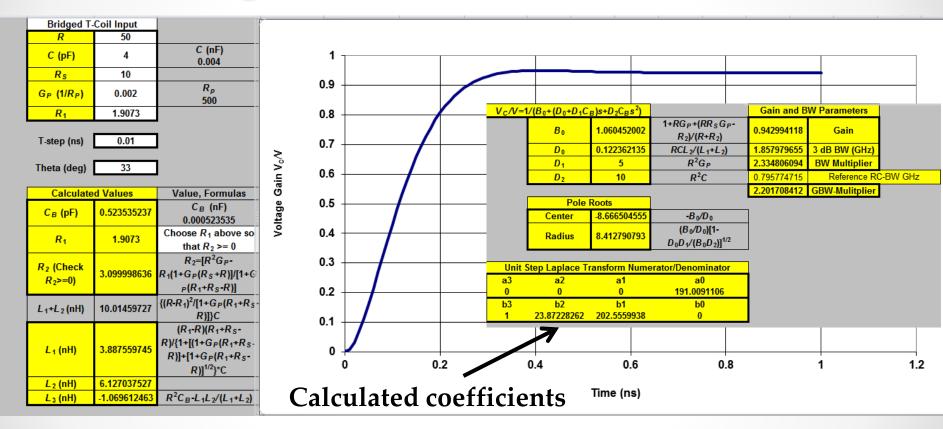
(Table resolution increased to 9 digits to show accuracy)

5th-order Step Response



$$X(s) = 4(-s+1)/[(s+1)^2 (s+2)^2 s] = (-4s+4)/(s^5+6s^4+13s^3+12s^2+4s)$$

Laplace transform is normalized ($b_7 = 1$) Left-shift the numerator and denominator coefficients Step response means b_2 is 0 Right-hand plane zero creates pre-shoot


5th-Order Step Response

Copyright 2015 Teraspeed Labs

Teraspeed Labs

Embedded with Constant-R Bridged T-Coil Calculations

Scaled Time (ns), L (nH), C (nF) with 3rd order Laplace Transform sheet

Closed-form equations inserted above Time Response

Copyright 2015 Teraspeed Labs

Guidance

- <u>Normalize coefficients</u> (highest order denominator coefficient set to 1)
- <u>Scale coefficients</u> so that values are meaningful for time-steps between 0.01 and 1 (because of Taylor Series expansion)
- Left-shift the entries for lower-order functions
- <u>Change time-step</u> to zoom-in or zoom-out
- Get numerical values from spread sheet
- <u>Copy and paste</u> last row to extend spread sheet for more time rows (also adjust display range)

Final Remarks

- Works with real, complex, multiple roots, pole-zero canceled roots, and right-hand plane zeros
- Response fast even though spread-sheet implementation is based on inefficient storage
- Recursive routine (slide 11) can be done <u>in-place</u> for better storage efficiency in other programming applications
- Display shows changes as coefficients are modified
- Display diverges if Laplace Transform close-form response diverges

Some Applications

- Show step and impulse response for network analysis
- Show step and impulse response for lower-order, reduced order (or pole-zero) Touchstone formulations in IBIS-AMI analysis
- Embed for time-response displays in analysis applications by inserting calculations at top

European IBIS Summits Downloads and References

- www.eda.org/ibis/summits/may15/
 - ross.xls (time-response utility)
 - <u>ross.pdf</u> (this presentation for instructions, examples)
- www.eda.org/ibis/summits/may11/
 - ross3.pdf, "Continuous and Discrete Modeling for IBIS-AMI" (gives theoretical background for both differential and difference equations)
 - <u>ross2.pdf</u>, "T-Coils and Bridged-T Networks" (gives general T-coil derivations)

