European IBIS Summit Meeting

May 15th 2013, Paris France

Thévenin's theorem revisited. A new approach to IC buffer modeling and it's relation to IBIS

I.S. Stievano¹, C. Diouf², <u>M. Telescu²</u>, N.Tanguy², F.G. Canavero¹

¹Politecnico di Torino, Department of Electronics and Telecommunications, EMC Group ²Université Européenne de Bretagne, Université de Brest; CNRS, UMR 6285, Lab-STICC

Outline

- Context
- Building a nonlinear Thévenin-like model for IC buffers
- Demonstrating the approach on a TI driver
- Showing the mathematical relation between the new method and IBIS
- Conclusion

Context

Joint research on buffer modeling

Politecnico di Torino, Italy and Université de Brest, France

Focus:

- New methodologies and approaches to IC buffer macromodeling
- Better accuracy in critical conditions, more general approach to modeling

Thévenin's theorem for a linear two-port

Léon Charles Thévenin (1857-1926)

...adapting the idea to model a single ended driver

Objectives:

>Show that the structure constitutes a reasonable choice

Show that the resulting model is mathematically related to IBIS

...adapting the idea to model a single ended driver

Example: Texas Instruments driver SN74ALVCH16973, VDD = 2,5V

OPEN CIRCUIT VOLTAGE

Single-input-single-output nonlinear element
 Gives the input-output characteristic of the driver
 Can be modeled in different ways
 Considered an independent voltage source here
 Will be discussed further on in relation to IBIS

Nonlinear conductance

On state / off state separationStatic table based model at this stage

$$G(v_1, v_2) = \left[\hat{e}(v_1) / V_{DD}\right] G_H(v_2) + \left[\left(1 - \hat{e}(v_1)\right) / V_{DD}\right] G_L(v_2)$$

= $\widetilde{w}_H G_H(v_2) + \widetilde{w}_L G_L(v_2)$

10/17

Transient simulation results

Transient simulation results

Transient simulation results

Device model	Memory	Speed-up
reference transistor-level	2092 kB	-
proposed model	303 kB	10×

Error due to edge misalignment
during spurious events → can be
compensated by a capacitance, simple FIR etc.

Relation with IBIS

Thévenin-like

$$i_{2}(t) = G(v_{1}, v_{2})[\hat{e}(v_{1}) - v_{2}]$$

$$= [(\hat{e}(v_{1})/V_{DD})G_{H}(v_{2}) + ((1 - \hat{e}(v_{1}))/V_{DD})G_{L}(v_{2})][\hat{e}(v_{1}) - v_{2}]$$

$$= [\widetilde{w}_{H}G_{H}(v_{2}) + \widetilde{w}_{L}G_{L}(v_{2})][\hat{e}(v_{1}) - v_{2}]$$

$$= \widetilde{w}_{H}[\hat{e}(v_{1}) - v_{2}]G_{H}(v_{2}) + \widetilde{w}_{L}[\hat{e}(v_{1}) - v_{2}]G_{L}(v_{2})$$

$$= \widetilde{w}_{H}\widetilde{f}_{H}(v_{1}, v_{2}) + \widetilde{w}_{L}\widetilde{f}_{L}(v_{1}, v_{2})$$
IBIS-like

$$i_{2}(t) = w_{H}f_{H}(V_{DD} - v_{2}) + w_{L}f_{L}(v_{2})$$

Static characteristics of the output port in high and low state

>Weighting functions computed from devices responses on two resistive loads

Relation with IBIS

Thévenin-like

$$i_{2}(t) = G(v_{1}, v_{2})[\hat{e}(v_{1}) - v_{2}]$$

$$= [(\hat{e}(v_{1})/V_{DD})G_{H}(v_{2}) + ((1 - \hat{e}(v_{1}))/V_{DD})G_{L}(v_{2})][\hat{e}(v_{1}) - v_{2}]$$

$$= [\tilde{w}_{H}G_{H}(v_{2}) + \tilde{w}_{L}G_{L}(v_{2})][\hat{e}(v_{1}) - v_{2}]$$

$$= \tilde{w}_{H}[\hat{e}(v_{1}) - v_{2}]G_{H}(v_{2}) + \tilde{w}_{L}[\hat{e}(v_{1}) - v_{2}]G_{L}(v_{2})$$

$$= \tilde{w}_{H}\tilde{f}_{H}(v_{1}, v_{2}) + \tilde{w}_{L}\tilde{f}_{L}(v_{1}, v_{2})$$
IBIS-like

$$i_{2}(t) = w_{H}f_{H}(V_{DD} - v_{2}) + w_{L}f_{L}(v_{2})$$

In the Thévenin-like model both $\tilde{w}_{H,L}$ and $\tilde{f}_{H,L}$ depend on v_1 In the IBIS-like model only $w_{H,L}$ depend on v_1

Summing things up...

Independent voltage source here \rightarrow heuristic nonlinear model, polynomial Volterra-like filter, neural network etc.

Static table-based model here → dynamic models: compensation capacitance, linear FIR, nonlinear model if needed

Conclusions and future developments

Top down approach: circuit theory → macromodel
 Basic building block for future EDA tools
 Enhanced models should account for circuit dynamics, V_{DD} variation, differential devices
 Good potential in solving inaccuracies related to jitter, overclocking, etc.

