
Page 1

TERASPEED

CONSULTING

GROUP
2011 Teraspeed Consulting Group LLC 

Continuous and Discrete

Modeling for IBIS-AMI

Bob Ross

bob@teraspeed.com

European IBIS Summit

Naples, Italy

May 11, 2011



Page 2

TERASPEED

CONSULTING

GROUP

Problem and Traditional Methods

2011 Teraspeed Consulting Group LLC 



Page 3

TERASPEED

CONSULTING

GROUP

References

• B. Ross, “Taylor Series Duality,” Proc. 7th IEEE 

Workshop of Signal Propagation on Interconnects, 

Siena, Italy, May 11-14, 2003, pp. 97-100.

– http://www.teraspeed.com

• Full equations in paper

– http://tinyurl.com/3pz8ec2 

• (presentation – temporary)

2011 Teraspeed Consulting Group LLC 



Page 4

TERASPEED

CONSULTING

GROUP
2011 Teraspeed Consulting Group LLC 

Special Notion - Equations (1)-(4)

 )(sX
0

1

1

0

1

1

bsbs

asa
n

n

n

n

n




,                

initial conditions, ),0(,),0( 1nxx           

 

0)()()( 0011 txdtxdtx nnn           

 

0

1

1

0

1

1 )(
)(

dzdz

czcz
zZ

n

n

n

n

n




.              

Laplace Transform

Differential Equation

Difference Equation

Z Transform

 

0)()()( 0

1

1 txbtxbtx n

n

n            

initial conditions, ),0(,),0( 10 nxx   



Page 5

TERASPEED

CONSULTING

GROUP
2011 Teraspeed Consulting Group LLC 

Conversions and Responses (5)-(26)

Laplace

Transform

Differential

Equation

Z Transform
Difference

Equation

B

D

Time

Responses

Differential

Responses

M(T),  E,
A, M(T) = exp(AT)

E, L(T) = ln(E)/T

L(T),  A,
| I-L|        A

Taylor Series

(Traditional

methods)

Dual of T.S.

| I-M|       E

Numerator

Coefficients

Initial

Conditions
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Differential            Difference

Eqn’s (5)-(8)          Eqn’s (9)-(12)

x(t) = 

a =

B =

a = Bx(0)

z(t) = 

c =

D =

c = Dz(0)
2011 Teraspeed Consulting Group LLC 
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Differential            Difference

Eqn’s (13)-(16)      Eqn’s (18)-(21)

dx(t)/dt = Ax(t)

A = 

x(t+T) = Mx(t)

M = exp(AT)

z(t+T) = Ez(t)

E =

dz(t)/dt = Lz(t)

E = exp(LT)

L = ln(E)/T
2011 Teraspeed Consulting Group LLC 
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Differential            Difference

Eqn (17)                 Eqn (22)

| I-M| =

A =

E =

| I-L| =
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Characteristic Equation

• Cayley-Hamilton Theorem – a matrix 

satisfies its own characteristic equation

• Computation of characteristic equations:

– Based on built in mathematical functions

– Or based on calculating traces (sum of diagonal 

terms) of powers of M or L

– Further simplifications possible (outside scope 

of this presentation)

2011 Teraspeed Consulting Group LLC 
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Taylor Series         Dual of T.S.

Eqn’s (23)-(24)      Eqn (25)-(26)
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Recursive Taylor Series

(Repeat b and c)

a) Initialize: i = 1, … , n-1 (B)

b) Extend:  i = n, … , p (A)

c) Next time step:  i = 0, … , n-1   (Taylor series)

R. I. Ross, “Evaluating the Transient Response of a Network Function,” 

Proc. IEEE, vol.55, pp. 615-616, May 1967
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Excel T.S. Implementation
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Conversions and Responses (5)-(26)
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Conclusions

• Recursive Taylor Series

– In place, if needed

– No special handing for multiple or complex 

poles as with partial fraction expansions

– Embedded software and spread sheets

– Good convergence with Taylor Series

• M or L can be calculated by functions of 

matrices can be used for exact continuous 

and discrete system conversions

2011 Teraspeed Consulting Group LLC 
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Background - Symmetry (State 

Transition/Logarithmic Matrices)

Difference (Time)

Differential

z(t), 

L(T)

x(t), M(T)
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Transpose Symmetry

(Difference/Differential Equation)

Difference (Time)

Differential

A

E
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Transpose Symmetry

(Taylor Series/Dual Responses)

Difference (Time)

Differential

Dual of 

T.S.

Taylor Series
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Taylor Series and Dual of

Taylor Series Derivations

• Taylor Series from State Transition Matrix

– x(t+T) = M(T)x(t) = (I + AT + A2T2/2! …)x(t)

– Akx(t) is k-th derivative of x(t)

• Dual of T.S. from Natural Logarithm Matrix

– dz(t)/dt = L(T)z(t) = - [(I - E) + (I - E)2/2 +       

(I - E)3/3 + … ]z(t)/T

– Ekz(t) is the k-th shifted sample of z(t)

– Collect the terms for each power of E
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Logarithmic Expansion: Binomial 

Series & Pascal Triangle Reduction
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Example: sin( t),

Some Original & Scaled Terms

• Scaling by weighting samples: yi = exp(- t)xi

– k T k Scaled T k (41 terms)

• 0         -3.14586         -3.14586

• 1        40.                  12.8867

• 9          3.04e+7     1135.93   (maximum value)

• 20       -6.89e+9         -1.00   (set by scaling)

• 30       -2.83e+7         -4.93801e-8

• 40       -0.025             -5.26270e-22
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Example: sin( t), Last 1/2 Cycle,

48-th Derivative

• 0.0 <= t <= 1.0, T = 0.02, 51 samples

– Function      Exact          Dual T.S. (error bold)

• sin[45]       0.000000 -1.08745e-5

• sin[46]      -0.587785 -0.587844

• sin[47]      -0.951057 -0.951141

• sin[48]      -0.951057 -0.951134

• sin[49]      -0.587785 -0.587827

• sin[50]       0.000000 1.08745e-5

– (All other iterative methods are “Exact”)
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Example: sin( t), Last 1/2 Cycle,

49-th Derivative

• 0.0 <= t <= 1.0, T = 0.02, 51 samples

– Function      Exact          Dual T.S. (error bold)

• cos[45]     -1.00000 -1.00090

• cos[46]     -0.809017 -0.809081

• cos[47]     -0.309017 -0.309033

• cos[48]      0.309017 0.309055

• cos[49]      0.809017 0.809094

• cos[50]      1.00000 1.00090

– (All other iterative methods are “Exact”)
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Conclusions

• Exact transformations

– Practical modeling applications

– Common routines for both domains

• Taylor Series & Binomial Series “duality”

– Accurate with scaling

– But not as accurate and stable as other 

iterative methods


