Continuous and Discrete Modeling for IBIS-AMI

Bob Ross bob@teraspeed.com

European IBIS Summit Naples, Italy May 11, 2011

Problem and Traditional Methods

- Relate, for example, tap coefficients to continuous function for IBIS-AMI
- Laplace Transform to/from Z Transform

Closed form tables

 Bilinear transformation approximation commonly used by substituting for s or z:

$$z = e^{st} \cong \frac{1+sT/2}{1-sT/2}, s = \frac{1}{T}\ln(z) \cong (\frac{2}{T})\frac{z-1}{z+1}$$

Exact solution given here

References

- B. Ross, "Taylor Series Duality," Proc. 7th IEEE Workshop of Signal Propagation on Interconnects, Siena, Italy, May 11-14, 2003, pp. 97-100.
 - http://www.teraspeed.com
 - Full equations in paper
 - http://tinyurl.com/3pz8ec2
 - (presentation temporary)

Special Notion - Equations (1)-(4)

Laplace Transform	$X(s) = \frac{a_{n-1}s^{n-1} + \dots + a_0}{s^n + b_{n-1}s^{n-1} + \dots + b_0},$
Differential Equation	$x^{n}(t) + b_{n-1}x^{n-1}(t) + \dots + b_{0}x(t) = 0$ initial conditions, $x(0), \dots, x^{n-1}(0)$,
Difference Equation	$x_{n}(t) + d_{n-1}x_{n-1}(t) + \dots + d_{0}x_{0}(t) = 0$ initial conditions, $x_{0}(0), \dots, x_{n-1}(0),$
Z Transform	$Z(z) = \frac{z(c_{n-1}z^{n-1} + \dots + c_0)}{z^n + d_{n-1}z^{n-1} + \dots + d_0}.$
	TEDAÉDEER

CONSULTING

GROUP

Conversions and Responses (5)-(26)

Differential Eqn's (5)-(8)	Difference Eqn's (9)-(12)
$\mathbf{x}(t) = [x^{0}(t), x^{1}(t), \cdots, x^{n-1}(t)]^{T},$	z(t) = $[x_0(t), x_1(t), \dots, x_{n-1}(t)]^T$
$\mathbf{a} = [a_{n-1}, \cdots, a_0]^T,$	$\mathbf{c} = \left[c_{n-1} \cdots c_0 \right]^T$
$\mathbf{B} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ b_{n-1} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_2 & b_3 & \cdots & 1 & 0 \\ b_1 & b_2 & \cdots & b_{n-1} & 1 \end{bmatrix}$	$\mathbf{D} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ d_{n-1} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d_2 & d_3 & \cdots & 1 & 0 \\ d_1 & d_2 & \cdots & d_{n-1} & 1 \end{bmatrix}$
a = Bx(0) Page 6 © 2011 Teraspeed	c = Dz(0) Consulting Group LLC TERASPEED CONSULTING

,

 \odot 2011 Teraspeed Consulting Group LLC

GROUP

Differential Eqn's (13)-(16)

 $d\mathbf{x}(t)/dt = \mathbf{A}\mathbf{x}(t)$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \\ -b_0 & -b_1 & \cdots & -b_{n-1} \end{bmatrix}$$

 $\mathbf{x}(t+T) = \mathbf{M}\mathbf{x}(t)$

Difference Eqn's (18)-(21)

 $\mathbf{z}(t+T) = \mathbf{E}\mathbf{z}(t)$

$$d\mathbf{z}(t)/dt = \mathbf{L}\mathbf{z}(t)$$

 $\mathbf{E} = \exp(\mathbf{L}T)$ $\mathbf{L} = \ln(\mathbf{E})/T$

 $\mathbf{M} = \exp(\mathbf{A}T)$ Page 7

© 2011 Teraspeed Consulting Group LLC

TERASPEED CONSULTING GROUP

Characteristic Equation

- Cayley-Hamilton Theorem a matrix satisfies its own characteristic equation
- Computation of characteristic equations:
 - Based on built in mathematical functions
 - Or based on calculating traces (sum of diagonal terms) of powers of M or L
 - Further simplifications possible (outside scope of this presentation)

Taylor Series Eqn's (23)-(24)

Dual of T.S. Eqn (25)-(26)

 $x_{j+1}^{i}(t) = \sum_{k=0}^{p} x_{j}^{i+k}(t)\alpha_{k}$

 $\alpha_k = T^k / k!$

 $x_{j}^{i+1}(t) = \sum_{k=0}^{q} x_{j+k}^{i}(t)\beta_{k}$ $\beta_{0} = -\frac{1}{T}\sum_{i=1}^{q} \frac{1}{i}$ $\beta_{k} = \frac{(-1)^{k-1}}{T} \binom{q}{k} / k$ $\binom{q}{k} = \frac{q!}{k! (q-k)!} = \binom{q}{q-k}$

Recursive Taylor Series (Repeat b and c)

a) Initialize: i = 1, ..., n-1 (B) $x(0) = a_{n-1}$ $x^{i}(0) = a_{n-1-i} - \sum_{j=0}^{i-1} b_{n-i-j} x^{j}(0)$ b) Extend: i = n, ..., p (A) $x^{i}(t) = -\sum_{j=0}^{n-1} b_{j} x^{i-n-j} (t)$ c) Next time step: i = 0, ..., n-1 (Taylor series) $x^{i}(t+T) = \sum_{j=i}^{p} x^{j}(t) \frac{T^{j-i}}{(j-i)!}$

R. I. Ross, "Evaluating the Transient Response of a Network Function," *Proc. IEEE*, vol.55, pp. 615-616, May 1967

Excel T.S. Implementation

GROUP

Conversions and Responses (5)-(26)

Conclusions

- Recursive Taylor Series
 - In place, if needed
 - No special handing for multiple or complex poles as with partial fraction expansions
 - Embedded software and spread sheets
 - Good convergence with Taylor Series
- M or L can be calculated by functions of matrices can be used for exact continuous and discrete system conversions

Background - Symmetry (State Transition/Logarithmic Matrices)

Difference (Time)

$$\mathbf{x}(t), \mathbf{M}$$

Differential **z**(t),

Transpose Symmetry (Difference/Differential Equation)

Difference (Time)

Taylor Series and Dual of Taylor Series Derivations

- Taylor Series from State Transition Matrix
 - $-\mathbf{x}(t+T) = \mathbf{M}(T)\mathbf{x}(t) = (\mathbf{I} + \mathbf{A}T + \mathbf{A}^2T^2/2! \dots)\mathbf{x}(t)$

 $-\mathbf{A}^{\mathbf{k}}\mathbf{x}(t)$ is **k**-th derivative of $\mathbf{x}(t)$

- Dual of T.S. from Natural Logarithm Matrix
 - $dz(t)/dt = L(T)z(t) = [(I E) + (I E)^{2}/2 + (I E)^{3}/3 + ...]z(t)/T$
 - $-\mathbf{E}^{\mathbf{k}}\mathbf{z}(t)$ is the **k**-th shifted sample of $\mathbf{z}(t)$
 - Collect the terms for each power of **E**

Logarithmic Expansion: Binomial Series & Pascal Triangle Reduction

Example: sin(10π**t**), **Some Original & Scaled Terms**

• Scaling by weighting samples: $y_i = \exp(-\gamma t)x_i$

_	k	$Teta_{\mathbf{k}}$	Scaled $T\beta_k$ (41 terms)
	• 0	-3.14586	-3.14586
	•	40.	12.8867
	• 9	3.04e+7	1135.93 (maximum value)
	• 20	-6.89e+9	-1.00 (set by scaling)
	• 30	-2.83e+7	-4.93801e-8
	• 40	-0.025	-5.26270e-22

Example: sin(10πt), Last I/2 Cycle, 48-th Derivative

• 0.0 <= t <= 1.0, T = 0.02, 51 samples

– Function	Exact	Dual T.S. (error bold)
• sin[45]	0.0000 00	-1.08745e-5
• sin[46]	-0.587 785	-0.587 844
• sin[47]	-0.951 057	-0.951141
• sin[48]	-0.951 057	-0.95 34
• sin[49]	-0.587 785	-0.587 827
• sin[50]	0.0000 00	1.08745e-5

- (All other iterative methods are "Exact")

Example: sin(10πt), Last I/2 Cycle, 49-th Derivative

• 0.0 <= t <= 1.0, T = 0.02, 51 samples

– Function	Exact	Dual T.S. (error bold)
• cos[45]	-1 .000 00	-1.000 90
• cos[46]	-0.8090 7	-0.8090 8 I
• cos[47]	-0.3090 7	-0.3090 33
• cos[48]	0.3090 7	0.3090 55
• cos[49]	0.8090 7	0.8090 94
• cos[50]	1 .000 00	I.000 90

- (All other iterative methods are "Exact")

Conclusions

- Exact transformations
 - Practical modeling applications
 - Common routines for both domains
- Taylor Series & Binomial Series "duality"
 - Accurate with scaling
 - But not as accurate and stable as other iterative methods

