
IBIS-AMI Modeling Recommendations

– European IBIS Summit 2010

IBIS-AMI Modeling Recommendations

– European IBIS Summit 2010

May 12, 2010
Hildesheim, Germany

Kumar Keshavan
Ken Willis

Presented by Srdjan Djordjevic

2

Agenda

� When is AMI required?
� IBIS-AMI key concepts
� General AMI recommendations
� Real-world AMI examples

3

Agenda

� When is AMI required?
� IBIS-AMI key concepts
� General recommendations
� Real-world AMI examples

4

When is AMI required?

� AMI is required when adaptive filtering is done by
the Serdes Tx or Rx

� This means that the filtering automatically adjusts
to the specific channel, based on its own specific
algorithm

� For applications that use “static” filtering (ex. PCI
Express Gen 1), the behavior can be represented
in a circuit model, and AMI is NOT mandatory

5

AMI - Required vs. Convenient

FFEFFE DFEDFEChannel EngineChannel Engine

PackagePackage
InterconnectInterconnect

SystemSystem
InterconnectInterconnect

PackagePackage
InterconnectInterconnect

(impulse response)(impulse response)

•Despite that fact that

AMI may not be

REQUIRED for static pre-

emphasis, it can be

CONVENIENT to do so

•Folding the pre-

emphasis filtering into an

algorithmic model is

convenient because filter

settings can be modified

without requiring

additional

characterizations to be

run for the analog

channel

6

Agenda

� When is AMI required?
� IBIS-AMI key concepts
� General recommendations
� Real-world AMI examples

7

IBIS-AMI Key Concepts

� Circuit and algorithmic models
� “Tap” terminology
� IBIS-AMI data flow and APIs

8

Circuit Models and Algorithmic Models

� The Tx – to – Rx pathway is composed of 3 separate entities
• Tx algorithmic part
• Analog (i.e. “circuit”) channel part
• Rx algorithmic part

� Three “decoupled” parts can be independently solved in time domain
• Underlying assumption is HIGH IMPEDANCE connection between analog

and algorithmic elements

Tx AMITx AMI Rx AMIRx AMI

9

“Tap” Terminology

Pre cursor(s)

Main cursor

Post cursor(s)

As typically seen in As typically seen in ““FFEFFE”” implementationsimplementations

10

IBIS-AMI Data Flow and APIs

AMI_Init
-Initialize filter

- Setup Data StructuresModel input
parameters

Impulse Response
Modified

Impulse Response

AMI_Close
-Free memory etc

AMI_GetWave
-Waveform Processing

-Clock and Data RecoveryContinuous waveform

Clock ticks

Equalized waveform

11

AMI APIs – Impulse Response or Waveforms

� AMI_Init
• Takes in the impulse response of the channel
• Algorithm in DLL decides how to best filter it
• The filtered (and hopefully improved) “modified” impulse

response is passed back to the tool

� AMI_GetWave
• Takes in raw waveforms of the channel
• Algorithm in DLL decides how to best filter it, “real time”
• The filtered “modified” waveform is passed back to the

tool, along with the clock ticks (sampling information)

12

Agenda

� When is AMI required?
� IBIS-AMI key concepts
� General AMI recommendations
� Real-world AMI examples

13

General Recommendations

� Circuit vs. algorithmic model content
� When to use AMI_Init vs. AMI_GetWave
� Statistical analysis and AMI_Getwave
� Using ibischk5 for .ibs and .ami files
� IBIS-AMI and vendor-independence

14

Circuit vs. Algorithmic Model Content

� Don’t try to put circuit parasitics into the algorithmic
portion of the model

� Leaving out circuit parasitics means you will miss
reflections from impedance discontinuities that
exist between the Tx output / Rx input and the
interconnect channel

� These should get captured in the impulse
response

� If you leave these out you will not correlate back to
golden data from circuit models (ex. transistor-
level IO models)

15

Using AMI_Init vs. AMI_GetWave

� Basic principle – K.I.S.S.
• “Keep it simple, SI people!”

� AMI_Init > modifies the impulse response
• If the filtering functionality sets up the coefficients once based on

the channel, this API is the simplest implementation

� AMI_GetWave > modifies the raw waveforms
• If the filtering functionality has real-time, dynamic adaptation of its

coefficients based on the incoming waveforms, you need this API
• If the algorithm includes clock and data recovery (CDR)

functionality, this API is needed

� Bottom line > use AMI_Init if it will do the job, otherwise use
AMI_GetWave

� Avoid extraneous functionality, and unnecessary
complexity

16

Statistical Analysis and AMI_GetWave

� Pure Statistical Analysis is not generally
compatible with AMI models using AMI_GetWave

� Should not assume anything about inner workings
of a “black box” DLL “AMI_GetWave” algorithm

� Could have non-LTI behavior
• Usually Receiver Models
• Adaptive DFE
• Pattern Dependent Equalization
• Time Domain Clock and Data Recovery

� Only limited Statistical Analysis is possible
• Ex. post-processing of time domain data

17

Using ibischk5 for .ibs and .ami Files

� The IBIS5.0 golden parser “ibischk5” can operate
on .ibs and .ami files (with –ami switch), ex:
• ibischk5 <ibis_file.ibs>
• Ibischk5 –ami <ami_file.ami>

� This should be run on all IBIS-AMI model kits
delivered by model developers to users

� Users should run this on incoming models

18

IBIS-AMI and Vendor Independence

� The purpose of defining a standard is to enable a
vendor-neutral format that users can consume with
their EDA tool of choice

� Sigrity has seen many “IBIS-AMI models” that are
full of vendor-specific content, and will only run in
a specific tool

� This violates the spirit of the IBIS standard

19

Agenda

� When is AMI required?
� IBIS-AMI key concepts
� General

recommendations
� Real-world AMI

examples

20

Real-World AMI Examples

� FFE – Feed Forward Equalizer
� DFE – Decision Feedback Equalizer
� Advanced DFE

All can be implemented with existing IBIS 5.0
functionality!

21

FFE

� FFE stands for Feed
Forward Equalizer

� Typically used in Tx
� Mathematically

• yn = Σ wi*xi
• Xn – input
• Yn – output

Z-1 Z-1

+

w0 w1

xn

yn

22

DFE

� DFE stands for Decision
Feedback Equalizer

� Removes inter-symbol
interference (ISI) by
adding corrections to
the input based on
previous decisions

� yn = xn + ΣΣΣΣ w i*d i
• yn - output
• xn - input
• d i - previous ‘i th ’ decision
• w i - i th tap weight

yn

W

cdr
xn dn+

23

Advanced DFE

Z-1 Blind
Adaptation

Non Linear
Function

xn dnZ-1Z-1

precursors

cdr

Weighting
function

Lookahead gain

Clk out

yn

DecisionPoint
Tune

dn

� DFE coefficients
by blind
adaptation

� Optional
adaptive gain
amplifier

� Optional tuning of
decision point

� Optionally include
precursor

24

Thank You!Thank You!

