Macromodels of IC Buffers Allowing for Large Power Supply Fluctuations

F.G.Canavero, I.A.Maio , I.S.Stievano

Dipartimento di Elettronica, Politecnico di Torino, Italy http://www.emc.polito.it/

Introduction

Models of IC buffers required for the systemlevel assessment of **signal integrity** and **EMC** effects via numerical simulation

Include the effects of power supply variations

- □ Recent applications (e.g., stacked SiP devices, → memories) exhibit large variation (30÷40%)
- □ State-of-the art models allow only for limited variations (10÷15% of the nominal power supply voltage)

Improve existing models

Example

[1] I.S.Stievano et. Al., "M[pi]log, Macromodeling via parametric identification of logic gates", TADVP 2004.

Mπlog model structure

e.g., IC output buffer (single-ended)

□ 2-piece model representation

$$\begin{split} \mathbf{i}(t) &= \mathbf{w}_{\mathsf{H}}(\mathsf{v},\mathsf{vdd},t) \ \mathbf{i}_{\mathsf{H}}(\mathsf{v},\mathsf{vdd},\mathsf{d}/\mathsf{d}t) + \\ & \mathbf{w}_{\mathsf{L}}(\mathsf{v},\mathsf{vdd},t) \ \mathbf{i}_{\mathsf{L}}(\mathsf{v},\mathsf{vdd},\mathsf{d}/\mathsf{t}) \end{split}$$

i_{H,L}: submodels accounting for buffer
 behavior @ fixed logic H and L state
 w_{H,L}: weighting signals for state switchings

□ Underlying (simplifying) assumptions

Model parameters computed for the nominal power supply VDD

Weighting signals $\rightarrow w_{H,L}(t)$ Submodels $i_{H,L} \rightarrow i_{H} = i_{H}(vdd-v,d/dt), i_{L} = i_{L}(v,d/dt)$

emc group

Mπlog model structure, cont'd

:: emc group

A – static compensation

□ Static surface for vdd \in [70,130]%VDD

e.g., Device @ L state

- State-of-the-art: i_L(v,VDD) (—)
- Complete 2D surface (model complexity increases)
- i_L(v,vdd) = k_L(vdd)* i_L(v,VDD) [2]

[2] Arpad Muranyi et. Al., "Gate Modulation Effect (table format)," IBIS BIRD #98.1, May 20, 2005.

□ Static surface for vdd \in [70,130]%VDD

Actual i-v operating region

Proposed model

: emc group

 $i_{L}(v,vdd) = k_{L}(vdd)^{*} i_{L}(v,VDD)$

□ include the information of the analytical MOS equations

□ triode region [3]

- A_n fitted with i_L(v,VDD) (—)
- k_L (vdd) by matching analytical NMOS equation with model equation along the load lines

emc group

□ Need of static characteristics @ VDD only (—)

[3] Jan M. Rabaey, "Digital Integrated Circuits - 2nd ed.", Prentice Hall electronics and VLSI series, 2003

DC model response

Relative errors less than 2%

Possible discrepancies outside the operating region do not affect model accuracy

---- reference ----- enhanced model (static comp.)

B – delay compensation

Embed the τ (UP,DOWN) information in the model

 $w_{H,L}(t) \rightarrow w_{H,L}(t - \tau(vdd))$

B – delay compensation, cont'd

Delay propagation [3]

 $T_{P}(vdd) \cong T_{P}(VDD) * (VDD/vdd)$

(accuracy: ~ 5%)

 $w_{H,L}(t) = w_{H,L}(t-\tau(vdd))$ $\tau(vdd) = \tau_P(VDD) - \tau_P(vdd) = \tau_P^*(1-VDD/vdd)$ No additional information is required

eme group

[3] Jan M. Rabaey, "Digital Integrated Circuits - 2nd ed.", Prentice Hall electronics and VLSI series, 2003

Enhanced model performance

Enhanced model performance, cont'd

Realistic test

reference — Mπlog model
 enhanced model (static & delay comp.)

Accuracy confirmed for vdd(t) > 40% VDD

Current vs. enhanced models

 $i(t) = w_{H}(v,vdd,t) i_{H}(v,vdd,d/dt) + w_{L}(v,vdd,t) i_{L}(v,vdd,d/t)$

Model	Submodels i _{H,L}	Weighting signals w _{H,L}
Mπlog	i _{H,L} (v,VDD,d/dt)	w _{H,L} (t)
Enhanced Mπlog	i _{H,L} (v, <mark>vdd</mark> ,d/dt)	w _{H,L} (t-τ(vdd))

□ no additional characterization required

\Box same complexity \rightarrow same speed-up (10 \div 100x)

Conclusions

- Generation of enhanced device models for large
 VDD variations (>30%)
- Simplified analytical equations for static & delay compensation
- □ High accuracy verified on realistic tests
- □ Apply to different device types (e.g., precomp)

MOCHA, MOdelling and CHAracterization for SiP - Signal and Power Integrity Analysis

□ European Project FP7-ICT-2007-1 (Jan 2008 – Dec 2009)

"Develop reliable modelling and simulation solutions for SiP design verification"

□ Partecipants:

- STMicroelectronics M6 SRL (Italy)
- Politecnico di Torino (Italy)
- Cadence Design Systems Gmbh (Germany)
- Agilent Technologies (Belgium)
- Universidade de Aveiro (Portugal),
- Microwave Characterization Center (France)

U Work Packages

- IC power integrity model
- IC buffers' innovative modelling approach
- SiP design and verification EDA platform
- SiP signal integrity measurement platform

