## HDL and IBIS 4.1 Models in a Functional DDR Memory Interface Analysis

R

#### **DATE 2006**

Simon Vines simon\_vines@mentor.com

UK Applications Group Newbury

### **Project Definition**

- Analyze a complete DDR memory interface in one simulation
- **Simulation should consider:** 
  - Overshoot/Undershoot violations
  - Setup and hold timing violations
  - Include pattern dependant crosstalk between address, command, control, and data signals
  - Slew dependant timing calculations



## **Project Approach**

- Combine HDL functional models and IBIS I/O models
- HDL code takes care of timing checks
- IBIS model contains basic electrical checks
- How does it all work?





### **Simulation Diagram**

Connection of HDL functional models and IBIS I/O models to the physical board layout





### **Analysis Details**

#### Memory module (simulated traces highlighted in white)



## **Analysis Details**

- Digital code from the chipset testbench generates the system stimulus
- Random address and data pattern generators ensure realistic stimulus patterns for the Write cycle
- Memory responds to chipset commands, thus automating Read cycle data patterns
- Single simulation completes a Read and Write Cycle multiple cycles can be run to simulate realistic bus utilization



HDL models contain timing checks

**Timing violations caused by PCB effects are flagged** 

#### C:\WINDOWS\system32\cmd.exe - 0 Warning:tRP violation during Activate Bank Ø Time: 147.849.999 fs Iteration: 2 in: Y\_J1\_MT46V64M16\_0.STATE\_REGISTER MT46V64M16(BEHAVE) Warning:tRFC violation during Activate Iteration: 2 in: Y\_J1\_MT46V64M16\_0.STATE\_REGISTER Time: 147.849.999 fs MT46V64M16(BEHAVE) Warning:RAS# Setup time violation -- tIS 147.849.999 fs Iteration: 2 in: Y\_J1\_MT46V64M16\_0.SETUP\_CHECK - MT Time: 46V64M16(BEHAVE) Warning:WE# Setup time violation -- tIS 147.849.999 fs Iteration: 2 in: Y\_J1\_MT46V64M16\_0.SETUP\_CHECK - MT Time: 46U64M16(BEHAUE) Warning:RAS# Hold time violation -- tIH Iteration: 0 in: Y\_J1\_MT46V64M16\_0.HOLD\_CHECK - MT4 Time: 148.749.999 fs 6V64M16(BEHAVE) Warning:RAS# Setup time violation -- tIS Iteration: 2 in: Y\_J1\_MT46V64M16\_0.SETUP\_CHECK - MT Time: 151,250 ps 46V64M16(BEHAVE) Warning:WE# Setup time violation -- tIS Iteration: 2 in: Y\_J1\_MT46V64M16\_0.SETUP\_CHECK - MT Time: 151.250 ps 46V64M16(BEHAVE) Warning:CAS# Hold time violation -- tIH Iteration: 0 in: Y\_J1\_MT46V64M16\_0.HOLD\_CHECK - MT4 Time: 152.150 ps 6V64M16(BEHAVE) Warning:RAS# Hold time violation -- tIH

SHV, DATE 06, Date 2006 - Company Confidential

- Analog Address, Clock, and Data signals at memory during a burst write from the chipset
- Simulation easily changed to generate pseudo-random or fixed address and



Digital Address and Clock signals at the memory die during a burst write from the chipset

| +             | +       | +                | +        | +            | +      | +      | <u>+</u> | MODULE_1_U1_A0    |
|---------------|---------|------------------|----------|--------------|--------|--------|----------|-------------------|
| +             |         | ate.             | ÷        | +            | in the | ±      | +        | MODULE_1_U1_A1    |
| +             | ()+     | ÷                | ¥        | 3 <b>4</b> 7 | +      | ¥      | +        | MODULE_1_U1_A2    |
| +             | +       | +                | +        | ÷.           | +      | +      | +        | MODULE_1_U1_A3    |
|               | *       | +                | ÷        | +            | +      | ×      | +        | MODULE_1_U1_A4    |
| +             | +       | +                | ÷        | ¥            | +      | ÷      | +        | MODULE_1_U1_A5    |
| +             | +       | +                | +        | +            |        | ¥      | ÷        | MODULE_1_U1_A6    |
| +             | .+      | +->              | ÷        | +            | +      | æ      | +        | MODULE_1_U1_A7    |
|               | +       | +                | ÷        | +            | ÷      | ÷      | +        | MODULE_1_U1_A8    |
| +             | +       | ate)             | ÷        | 8 <b>4</b> 8 | ಂಕನ    | ŧ      | +        | MODULE_1_U1_A9    |
|               | +       | ~ <del>+</del> > | ÷        | 34×.         | +      | ¥      | +        | MODULE_1_U1_A10   |
| +             | +       |                  |          |              | +      | +      | +        | MODULE_1_U1_A11   |
|               | ÷       | +                | ÷        | +            | ( + )  | ×      | +        | MODULE_1_U1_A12   |
| - +           | +       | +                | ÷        | +            | +      | ÷      | +        | MODULE_1_U1_A13   |
| โกกกกกกากก    | nnannn  | nnnnnn           | ากกะกกก  | ากกลุกกก     | nnnnnn | INN+NN | +        | WODULE_1_U1_CLK   |
| โกกกกกกศึกกกม | ากกะกกก | เกกษณกก          |          |              | ากก.   |        | +        | WODULE_1_U1_CLK_N |
|               |         |                  |          |              |        |        |          |                   |
|               |         |                  |          |              |        |        |          |                   |
| 0.0n 50.0n    | 100.0n  | 150.0n           | 200.0n   | 250.0n       |        | 350.0n | 400.0n   | T                 |
|               |         |                  | Time (s) |              |        |        |          |                   |
| 4             |         |                  |          |              |        |        | 2        |                   |
| Montor        | 0       | 1-1-             | -        | 4/           |        |        |          | Luppa.            |
|               | 9       |                  |          |              |        |        |          |                   |

- Combined analog and digital Address signals at the memory die during a burst write from the chipset
- Provides a useful visualization of the logical analog equivalent



#### **Future Enhancements**

- **Exercise all 64 DQ signals in the system (instead of 16)**
- Use AMS to analyze slew dependent timing outputting results on separate signal
- Model DDR2 system including ODT effects
- Include S-parameter models to replace PCB physical information for enhanced crosstalk analysis
- IBIS enhancements:
  - Instantiating a [Model] in a [Circuit Call] statement
  - Corner-specific Parameters passing

Each instance of an [External Circuit] is referenced by one or more [Circuit Call] keywords discussed later. (The [Circuit Call] keyword cannot be used to reference a [Model] keyword.)



## **Project Contributors**

- Gary Pratt, Mentor Graphics
- Mark Kniep, Micron Technology
- Pavani Jella, Micron Technology
- Randy Wolff, Micron Technology
- Paper Reference:
  - Functional SI simulation using IBIS 4.1 and HDL models
    - Pratt, Kniep, Jella, Wolff, 2006



# **Summary**

#### **IBIS 4.1/AMS**

- Clear Choice for SERDES SI Analysis
- Clear Choice for the Future of SI Analysis
- Extremely User Friendly
- Fast and Accurate
- Uses Limited Only by the Imagination
- Next Step
  - Silicon Vendors
    - Contact Gary Pratt for help getting started with IBIS/AMS
       <u>Gary Pratt@mentor.com</u>
  - PCB Vendors
    - Contact Gary Pratt to work with your vendor



### **Breaking News...**

#### **DDR2** Measurements

#### - Automatic Derating measurements

- Calculates slope
- Uses Derating look-up table



## **DDR2 Derating**





#### **VHDL-AMS Code**

```
process
  type data point type is array (0 to max points) of real;
  variable data point v : data point type;
  variable data point t : data point type;
  variable data point cntr: integer:
  variable slope, max slope : real;
begin -- measure the rising setup time slew rate
  max slope := 0.0; data point cntr := 0;
  -- wait for positive crossing of vref
   wait until vref cross;
   -- store all the data points until vih ac crossing
  while not vih ac cross loop -- loop until vih ac crossing
     data point v(data point cntr) := v a signal; --store voltagae
     data point t(data point cntr) := now;
                                              --store time
     assert data point cntr < max points-1 -- check for pointer overflow
         REPORT "transistion exceeded max transistion time" SEVERITY ERROR;
     data point cntr := data point cntr + 1; -- increment pointer
     wait on analog solution point; -- wait for the next time step
   end loop
   -- determine the maximum slope
  for i in 0 to data point cntr-1 loop -- loop through points, find slope
      slope := (v a signal - data point v(i)) / (now - data point t(i));
     if slope > max slope then max slope := slope; end if;
   end loop;
   --Apply this slope to the LUT, to determine Setup time requirement
   rising tds slope sig <= max slope*1.0e-9; -- for now, just display the slope
   -- measure the falling hold time slew rate
```

. . .

# WARNING

The Slides you are about to see are intended for model developers only!

The purpose of this application is to provide a thorough, easy-to-use memory interface verification. Once developed, these models are as easy to use as any other IBIS models.

End Users: Close your eyes now ...



HV, DATE 06, Date 2006 - Company Confidential

# IBIS File

(screen 1)

Typical IBIS Header

mt46v64m16.ibs \* IBIS 4.1 Model 1Gb DDR SDRAM - Die Revision "A" Part Number VDD/VDDQ Architecture Package MT46V64M16TG 2.5V/2.5V 64M x 16 66-pin TSOP [IBIS Ver] 4.1 [File name] mt46v64m16.ibs [File Rev] 2.3 09/22/2005 [Date] [Source] From silicon level SPICE model at Micron Technology, Inc. Micron Technology, Inc. 8000 S. Federal Way P.O. Box 6, M/S: 01-711 Boise, ID 83707-0006 [Notes] Rev 1.0: 10/11/2002 - Initial file creation Rev 1.1: 12/05/2002 - Updated clamp characteristics - Fixed x4 package pinout Rev 2.0: 6/10/2003 - Matched the I-V curves of the dq\_full and dq\_half models to silicon measurements - Updated the input capacitance of all models Rev 2.1: 12/18/2003 - Matched the I-V curves of the dq\_full and dq\_half models to the most recent silicon measurements - Added Vinl and Vinh corners to all models - Added Vmeas corners to the dqbuff models Rev 2.2: 09/22/2005 - Matched to latest silicon measurements - Added [Receiver Thresholds] - Added Vref and Overshoot specs to [Model Spec] section - Changed IBIS version to 4.0



## IBIS File

(screen 2)

| [Compor<br>[Manufa                                  | nent] MT46<br>acturer] Micro                                          | V64M16TG_AMS<br>on Technology                                      | /, Inc.                                                                                |                                                                                                  |                                                                                                  |                                                                                           |
|-----------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| <br> <br>R_pkg<br>L_pkg<br>C_pkg                    | ge]   TSOP part<br>typ<br>0.036<br>4.35nH<br>1.00pF                   | ckage<br>min<br>0.(<br>2.2<br>0.2                                  | 1<br>)25<br>73nH<br>72pF                                                               | max<br>0.046<br>5.97nH<br>1.29pF                                                                 |                                                                                                  |                                                                                           |
| [Pin]                                               | signal_name                                                           | model_name                                                         | R_pin                                                                                  | L_pin                                                                                            | C_pin                                                                                            |                                                                                           |
| <br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | VDD<br>DQO<br>VDDQ<br>DQ1<br>DQ2<br>VSSQ<br>DQ3<br>DQ4<br>VDDQ<br>DQ5 | POWER<br>NC<br>POWER<br>NC<br>NC<br>GND<br>NC<br>NC<br>POWER<br>NC | 0.034<br>0.043<br>0.044<br>0.042<br>0.041<br>0.041<br>0.039<br>0.037<br>0.036<br>0.035 | 5.02nH<br>5.22nH<br>5.02nH<br>5.53nH<br>5.32nH<br>4.48nH<br>4.34nH<br>4.13nH<br>3.78nH<br>3.31nH | 4.29pF<br>1.26pF<br>1.22pF<br>1.19pF<br>1.16pF<br>1.13pF<br>1.11pF<br>1.07pF<br>1.02pF<br>1.01pF | POWER<br> dqbuff<br> dqbuff<br> dqbuff<br> GND<br> dqbuff<br> dqbuff<br> POWER<br> dqbuff |
| <br>60<br>61<br>62<br>63<br>64<br>65<br>65<br>66    | DQ12<br>VDDQ<br>DQ13<br>DQ14<br>VSSQ<br>DQ15<br>VSS                   | NC<br>POWER<br>NC<br>GND<br>NC<br>GND<br>GND                       | 0.041<br>0.043<br>0.045<br>0.046<br>0.045<br>0.043<br>0.043<br>0.034                   | 3.38nH<br>4.18nH<br>4.72nH<br>4.96nH<br>5.28nH<br>5.61nH<br>4.77nH                               | 1.09pF<br>1.13pF<br>1.17pF<br>1.20pF<br>1.23pF<br>1.23pF<br>1.27pF<br>4.59pF                     | dqbuff<br> POWER<br> dqbuff<br> dqbuff<br> GND<br> dqbuff<br> GND                         |
| ******<br>[Diff_]                                   | •*************************************                                | ***DIFF PIN**<br>in vdiff                                          | ***********<br>                                                                        | *************<br>typ tdelay                                                                      | **************************************                                                           | ***********<br>elay_max                                                                   |
| 45                                                  | 46                                                                    | .360                                                               | / Ons                                                                                  | N                                                                                                | IA                                                                                               | NA                                                                                        |

*Typical IBIS Pin List* 

Graphics

| IBIS<br>File                 | <pre> ***********************EXTER] [node declarations]   For the Memory: DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 D0 UDQS LDQS UDM LDM DQE A0 A1 A1 BA0 BA1 RAS_N CAS_N WE_N CS_N [end node declarations]     Instantiate the VHDL Model</pre> | NAL MODELS**********<br>Q7 DQ8 DQ9 DQ10 DQ11<br>2 A3 A4 A5 A6 A7 A8<br>CKE CLK CLK_N GND V | 1 DQ12 DQ13 DQ<br>A9 A10 A11 A1<br>VDD TEST                                               | **************************************        |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|
| (screen 3)                   | [circuit call] MT46V64M16<br> Port_map port pad/node<br> Map DQ bits<br>Port_map DQ0 DQ0<br>Port_map DQ1 DQ1<br>Port_map DQ2 DQ2                                                                                                   |                                                                                            |                                                                                           |                                               |
| New IBIS 4.1<br>Circuit Call | <br> Start DQS, DM mapping<br>Port_map UDQS UDQS<br>Port_map LDQS LDQS<br>Port_map UDM UDM<br>Port_map LDM LDM<br> Start Address/Command port ma<br>Port_map A0 A0<br>Port_map A1 A1<br>Port_map A2 A2                             | apping                                                                                     |                                                                                           |                                               |
| Memory HDL                   | Port_map A3    A3<br>Port_map A4    A4                                                                                                                                                                                             |                                                                                            |                                                                                           |                                               |
| Model                        | <br> Start Control bit port mappin<br>Port_map CS_N CS_N                                                                                                                                                                           | ng                                                                                         |                                                                                           |                                               |
|                              | Port_map CKE CKE                                                                                                                                                                                                                   | ICX Fun                                                                                    | ctional DDR2 Sim                                                                          | nulation                                      |
|                              | Map CLK Signals<br>Port_map CLK CLK<br>Port_map CLK_N CLK_N<br> Misc.<br>Port_map DQE DQE<br>[end circuit call]                                                                                                                    | Chipset IBIS 4.1 Model<br>Chipset<br>HDL<br>Chipset                                        | Layout Database<br>PCB Traces, Vias,<br>Passives,<br>Connectors, etc<br>43 signals/traces | Memory IBIS 4.1 Mode<br>Memory<br>IBIS<br>HDL |



IBIS File (screen 4)

*New IBIS 4.1 Circuit Calls* 

Instances of traditional IBIS table models

IBIS Model Instantiation (Needed for each individual signal) |Port\_map\_port\_pad/node [circuit call] clk\_input Port map A signal 45 Port\_map D\_receive CLK GND Port map A gnd Port map A gcref GND Port map A pcref VDD [end circuit call] [circuit call] clk\_input Port\_map A\_signal 46 Port map D receive CLK N Port\_map A\_gnd GND Port map A gcref GND Port\_map A\_pcref VDD [end circuit call] DO Models: DO0: [circuit call] dq\_full port map a signal 2 port\_map d\_drive Dq0 port map d enable Dq oe port\_map d\_receive Dq0 port map a gnd gnd port\_map a\_GCREF gnd port\_map a\_pcref vdd port\_map a\_puref vdd port\_map a\_pdref gnd [end circuit call] ICX Functional DDR2 Simulation Memory IBIS 4.1 Model Chipset IBIS 4.1 Model Layout Database D01: [circuit call] dq\_full Chipset Memory PCB Traces, Vias, Chipset Memory port\_map a\_signal 4 IBIS IBIS Passives, HDL HDL Connectors, etc . . . 43 signals/traces

SHV, DATE 06, Date 2006 - Company Confidential

| IBIS<br>File<br>(screen 5) | *** External<br> Power Supply<br>[external circ<br>Language VHDL-<br>Corner Typ sup<br>Ports VDD GND<br>[end external<br> <br> Declare the V<br>[external circ<br>Language VHDL-<br>Corner Typ mt<br>Ports DQO DQ1<br>Ports LDQS UDQ<br>Ports CLK CLK<br>[end external<br> <br> | l Circuit D<br>Circuit Ca<br>cuit]<br>-AMS<br>oply.vhd su<br>circuit]<br>/HDL DRAM m<br>cuit] MT46V<br>-AMS<br>46v64m16.vh<br>DQ2 DQ3 DQ<br>S AO A1 A2<br>_N CKE CS_N<br>circuit] | eclarations<br>11:<br>Power<br>pply(ideal)<br>odel<br>64M16<br>d MT46V64M16(bel<br>4 DQ5 DQ6 DQ7 DQ<br>A3 A4 A5 A6 A7<br>RAS_N CAS_N WE<br>END EXTERNAL MOI | nave)<br>28 DQ9 DQ10 DQ11 DQ12 J<br>A8 A9 A10 A11 A12 A13<br>_N UDM LDM DQE | DQ13 DQ14 DQ15<br>BA0 BA1 |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|
| External Circuit           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                   | IDIG TADLE MODE                                                                                                                                             |                                                                             |                           |
| Externul Circuit           | **********                                                                                                                                                                                                                                                                      | *******                                                                                                                                                                           | IBIS TABLE MODE                                                                                                                                             | 72**************************                                                | *****                     |
|                            | [Model]<br>Model_type                                                                                                                                                                                                                                                           | dq_full<br>I∕O                                                                                                                                                                    |                                                                                                                                                             |                                                                             |                           |
| Declaration of             | Vin1 = 940.000                                                                                                                                                                                                                                                                  | OmV                                                                                                                                                                               |                                                                                                                                                             |                                                                             |                           |
| the AMS Power              | Vinn = 1.560V<br>Vmeas = 1.250V                                                                                                                                                                                                                                                 | /                                                                                                                                                                                 |                                                                                                                                                             |                                                                             |                           |
| Supply HDL                 | Vref = 1.250V<br>Cref = 30.000                                                                                                                                                                                                                                                  | ρF                                                                                                                                                                                |                                                                                                                                                             |                                                                             |                           |
| Models and                 | Rref = 50.0000                                                                                                                                                                                                                                                                  | Ohm                                                                                                                                                                               |                                                                                                                                                             |                                                                             |                           |
|                            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                   | typ                                                                                                                                                         | min                                                                         | max                       |
| Traditional IBIS           | C_comp                                                                                                                                                                                                                                                                          |                                                                                                                                                                                   | 3.460pF                                                                                                                                                     | 3.190pF                                                                     | 3.730pF                   |
| table model.               | !                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                             |                                                                             |                           |





#### SHV, DATE 06, Date 2006 - Company Confidential

States and a second second second second

|                  | 1      | /                                                              |
|------------------|--------|----------------------------------------------------------------|
| ΛΜΟ              | 2      | LIBRARY IEEE;                                                  |
| ANS              | 3      | USE IEEE.STD_LOGIC_1164.ALL;                                   |
|                  | 4      | USE IEEE.STD_LOGIC_UNSIGNED.ALL;                               |
| Filo             | 5      | USE IEEE STD_LOGIC_ARITH.ALL;                                  |
|                  | 6      | THEFT WEARING TO                                               |
| (coroon 1)       |        | ENTITY MT46V64M16 IS                                           |
| (Screen I)       | o<br>q | dal : inout STD LOGIC:=!7!:                                    |
|                  | 10     | dg1 : inout STD_LOGIC:='Z';                                    |
|                  | 11     |                                                                |
|                  | 12     | Addr0 : IN STD LOGIC;                                          |
|                  | 13     | Addr1 : IN STD_LOGIC;                                          |
|                  | 14     |                                                                |
| Maria and UDI    | 15     | Clk : IN STD_LOGIC;                                            |
| Memory HDL       | 16     | Clk_n : IN STD_LOGIC;                                          |
| File             | 17     | Ras_n : IN STD_LOGIC;                                          |
| 1 110            | 10     | Cas_n: IN STD_LOGIC;                                           |
|                  | 20     | WE_N : IN STD_LOGIC;<br>Dar : OUR STD_LOGIC                    |
|                  | 20     | ):                                                             |
|                  | 22     | END MT46V64M16;                                                |
| I/O declaration  | 23     |                                                                |
| and              | 24     | architecture behave of MT46V64M16 is                           |
|                  | 25     | Array for Read pipeline                                        |
| declaration of   | 26     | TYPE Array_Read_cmnd IS ARRAY (8 DOWNTO 0) OF STD_LOGIC;       |
| Intornal Signals | 27     | TYPE Array_Read_bank IS ARRAY (8 DOWNTO 0) OF STD_LOGIC_VECTOR |
| internut Signuts | 28     | TYPE Array_Read_cols IS ARRAY (8 DOWNTO U) OF STD_LOGIC_VECTOR |
|                  | 29     |                                                                |



#### AMS File (screen 2)

| Commands Decode |    |             |     |              |     |              |     |                         |  |  |
|-----------------|----|-------------|-----|--------------|-----|--------------|-----|-------------------------|--|--|
| Active_enable   | <= | NOT (Cs_in) | AND | NOT (Ras_in) | AND | Cas_in       | AND | We_in;                  |  |  |
| Aref_enable     | <= | NOT (Cs_in) | AND | NOT (Ras_in) | AND | NOT (Cas_in) | AND | We_in;                  |  |  |
| Burst_term      | <= | NOT (Cs_in) | AND | Ras_in       | AND | Cas_in       | AND | NOT(We_in);             |  |  |
| Ext_mode_enable | <= | NOT (Cs_in) | AND | NOT (Ras_in) | AND | NOT (Cas_in) | AND | <pre>NOT (We_in);</pre> |  |  |
| Mode_reg_enable | <= | NOT (Cs_in) | AND | NOT (Ras_in) | AND | NOT (Cas_in) | AND | NOT(We_in);             |  |  |
| Prech_enable    | <= | NOT (Cs_in) | AND | NOT (Ras_in) | AND | Cas_in       | AND | NOT(We_in);             |  |  |
| Read_enable     | <= | NOT (Cs_in) | AND | Ras_in       | AND | NOT (Cas_in) | AND | We_in;                  |  |  |
| Write enable    | <= | NOT (Cs in) | AND | Ras in       | AND | NOT (Cas in) | AND | NOT(We in);             |  |  |

HDL code to decode Commands



#### AMS File (screen 3)

Code for Timing checks

```
Hold check : PROCESS
BEGIN
    WAIT ON Sys_clk'DELAYED (tIH);
    IF Sys clk'DELAYED (tIH) = '1' THEN
        ASSERT (Cke'LAST_EVENT >= tIH)
            REPORT "CKE Hold time violation -- tIH"
            SEVERITY WARNING;
        ASSERT (Cs n'LAST EVENT >= tIH)
            REPORT "CS# Hold time violation -- tIH"
            SEVERITY WARNING;
        ASSERT (Cas n'LAST EVENT >= tIH)
            REPORT "CAS# Hold time violation -- tIH"
            SEVERITY WARNING;
        ASSERT (Ras n'LAST EVENT >= tIH)
            REPORT "RAS# Hold time violation -- tIH"
            SEVERITY WARNING;
        ASSERT (We n'LAST EVENT >= tIH)
            REPORT "WE# Hold time violation -- tIH"
            SEVERITY WARNING;
        ASSERT (Addr'LAST EVENT >= tIH)
            REPORT "ADDR Hold time violation -- tIH"
            SEVERITY WARNING;
        ASSERT (Ba'LAST EVENT >= tIH)
            REPORT "BA Hold time violation -- tIH"
            SEVERITY WARNING;
    END IF
END PROCESS:
```



#### Verification Procedure

1) Import layout
 2) Import Models

- 3) Assign Models
- 4) Probe Any Net

| <b>#</b> (                 | :/De         | signKit            | Micron            | /ICX_               | Simul                    | ation    | /355          | a.icx           |                     |              |          |        |
|----------------------------|--------------|--------------------|-------------------|---------------------|--------------------------|----------|---------------|-----------------|---------------------|--------------|----------|--------|
| Eile                       | <u>E</u> dit | Floor <u>p</u> lan | <u>S</u> ynthesis | Ver <u>i</u> fy     | <u>R</u> eport           | ⊻iew     | <u>T</u> ools | <u>O</u> ptions | E <u>l</u> ectrical | <u>H</u> elp |          |        |
| sele                       | ct           |                    |                   | Cheo                | :k <u>S</u> electe       | ed       |               | : H             | X: .                | 1.7764       | Υ:       | 1.2784 |
|                            |              |                    |                   | <u>C</u> heo        | tk All                   | _        |               |                 |                     |              |          | -      |
| Ŀ                          |              |                    |                   | <u>M</u> oa<br>Unda | eling Data<br>ate Timini | a Increi | mentally      | •               |                     |              |          |        |
|                            |              |                    |                   |                     |                          | gineroi  | norrainy      |                 | C3                  |              | <u>£</u> |        |
|                            |              |                    |                   | Prob                |                          |          |               |                 |                     |              | K        | 3      |
|                            |              |                    |                   |                     |                          |          |               |                 |                     |              | Ð        |        |
|                            |              |                    |                   |                     |                          |          | 13            |                 |                     |              | Y        |        |
| 무                          |              | <b>Televille</b>   | 2 2 5             |                     |                          | 최호       | <b>Pela</b>   |                 |                     |              |          |        |
| <u>छ ल</u><br>ह <b>::∏</b> |              |                    |                   |                     | me 2                     |          | 622           |                 | Jor                 | 6 C          |          |        |
| 8 <b>7U</b><br>•~~~        |              |                    |                   |                     |                          |          | cza 🗄         |                 |                     |              |          |        |
| <b>~</b>                   |              |                    |                   |                     |                          | 28       |               |                 |                     |              | Ľ        |        |
| یکر ا                      |              | CXROLL             |                   | NALIN               | <b>INNERN</b>            |          |               |                 |                     |              | 13       |        |
|                            |              |                    |                   |                     |                          |          |               |                 |                     | Sele C       |          |        |
| 1/2                        |              | mimim              |                   |                     | hunduu                   |          |               |                 | hindunu             |              |          |        |
|                            |              |                    |                   |                     |                          |          |               |                 |                     |              |          |        |
|                            |              |                    |                   |                     |                          |          |               |                 |                     |              |          |        |
| Q                          |              |                    |                   |                     |                          |          |               |                 |                     |              |          | -      |
|                            | ◀            |                    |                   |                     |                          |          |               |                 |                     |              |          | •      |



#### Verification Procedure (continued)

#### 5) Analyze Results





#### Verification **Procedure** C:\WINDOWS\system32\cmd.exe - ismb - 🗆 🗙 C:\DesignKits\Micron\ICX\_Simulation>ismb (continued) System Level Interconnect Synthesis Version: 3.5.03\_02 Date: Wed Nov 16 16:33:27 2005 Copyright Mentor Graphics Corporation 1994-2005 All Rights Reserved ;; UNPUBLISHED, LICENSED SOFTWARE. CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS. ;; **Restricted Rights Legend** 5) Analyze Results Use, duplication or disclosure is subject to restrictions stated in contract number ;;; MDA972-93-C-0045 with Mentor Graphics Corporation Version: 3.5.03\_02 icx1 Nov 16 2005 14:39:12 Nov 16 2005 14:39:12 Nov 16 2005 14:39:12 schemer Version: 3.5.03 02 Version: 3.5.03\_02 Version: 3.5.03\_02 charter Nov 16 2005 14:39:12 ismb Note: Resolving subsystem at C:/DesignKits/Micron/ICX\_Simulation/355a.ifc Note: Resolving subsystem at C:/DesignKits/Micron/ICX\_Simulation/vt8633\_1 Note: Using ICX\_IBIS\_SEARCH\_PATH for mated models search path. Note: Mated Model file search path is . Version: 3.5.03\_02 Nov 16 2005 14:39:12 is , Note: Opening design "C:/DesignKits/Micron/ICX\_Simulation/355a.icx". Note: Analyzing ElectricalNet A4 No Errors Detected ¥



