ICEM (IC Emission Modelling) Current Status & Results from various R+D projects

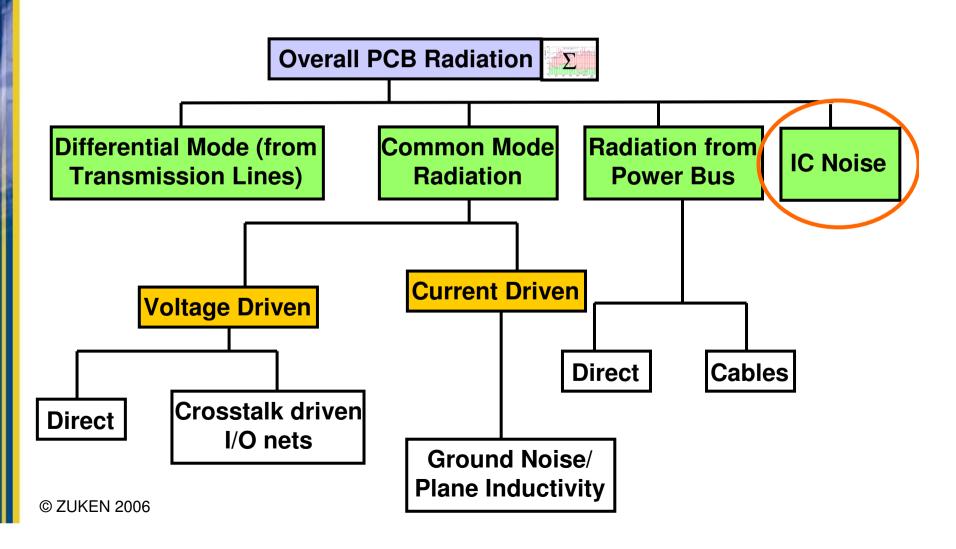
Ralf Brüning

Zuken EMC Technology Center

the engineering consulting company

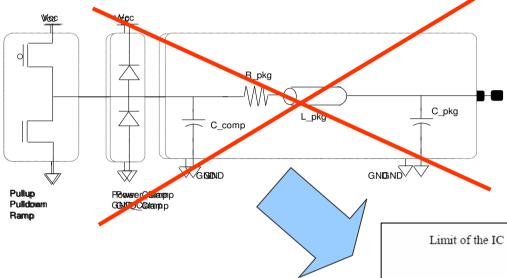
Goal of this Presentation

To give a brief overview on the ICEM (IC Emission Modelling) progress which has been reached with the aid of various EU funded MEDEA projects in the last couple of years.

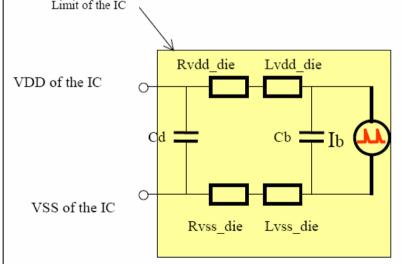

Some of the pictures are borrowed from Etienne Sicard (INSA).

Preface:

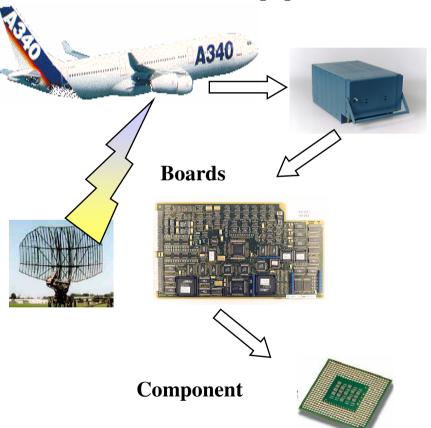
- IBIS models repesent voltage versus time (edges) or voltage versus current (clamps)
- EMC needs information on current versus time


Signal Emissions/EMI

 Emissions on PCB/HDI structures are coupled, conducted or radiated


Models in EMC Context

ICEM Model


IC Emission Modelling – required?

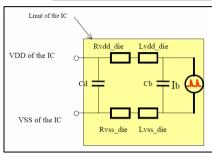
- IC emission modelling has been initiated and driven by mission critical electronic suppliers (aerospace, military)
- In the last 18 month there is a fast increasing demand from automotive electronics due to the higher sensibility of various electronic systems for common mode noise (i.e. widespreading of microcontrollers)
- EMC behaviour becomes for some applications part of buying/selecting criteria
- ⇒ Infineon has committet to provide ICEM (alike) informations for further microcontrollers (Tricore and followers)
- ⇒ ICEM will become subject of further EU R+D projects as well

Driving Force: Automotive+Aerospace

Susceptibility

Equipments

Emission


Personal entrainments

Mobile phone

Safety systems

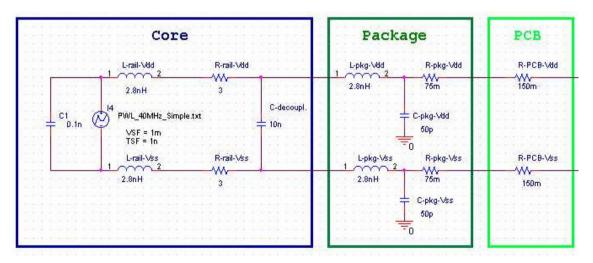
Content of an ICEM Model

	Ib	Current source.	Main source of parasitic emission considered in the model is the current source lb. The current shape may consist either of
		Unit: Ampere Description:	the time-domain description of the current versus time or as
-		piece-wise-linear	an equivalent triangular waveform. Typical values for Ib are
			several mA, up to 1A for the amplitude, 0.5 to 5ns for duration, and 500ps to 50ns for the period.
	Cd	Decoupling	On-chip decoupling capacitance between VDD and VSS. Cd
		capacitance.	is a physical coupling between the internal supply rails VDD
		Unit: Farad	(positive supply) and the ground rail VSS (0V supply). The
		Description:	origin of the capacitance Cd is rail to rail or junction
		discrete C	capacitance. Typical value ranges from 100pF (very small lcs)
			up to 20nF (0.18µm System-on-chip).
Ī	Lvdd_die,	Serial internal	The serial inductance Lvdd_die, Lvss_die, in serial with the
	Lvss_die	inductance.	local block capacitance Cb creates a high frequency
		Unit: Henry	resonance effect. Typical value ranges from 0.1nH (very short
		Description:	connection to supply) up to 10nH (long connection).
		discrete L	
Ī	Rvdd die,	Serial internal	The serial resistance of the supply network models the path

Rvss_die	resistance.	that connects the block supply to the main supply ring. Typical
	Unit: Ohm	value for Rvdd, Rvss are 0.5 to 50 ohm.
	Description:	
	discrete R	
Cb	Block decoupling	The local block decoupling Cb is the local supply-to-ground
	capacitance.	capacitance placed in serial with the local current generator
	Unit: Farad	ld. It accounts for the equivalent decoupling capacitance of
	Description:	the block. Separating the block capacitance from the on-chip
	discrete C	capacitance Cd creates a second LC network (Lvdd, Cb,
		Lvss) at the origin of a secondary resonance.

ICEM Activities 2004-2006

- Various EU projects have covered ICEM in the past:
 - LIMA
 - EMC-Pack
 - MESDIE
 - Parachute (planned)
- Companies involved (excerpt):
 - Infineon, Philips, STM
 - EADS
 - Bosch, Conti-Temic
 - Zuken
- Activities done so far:
 - Tooling
 - Model Development (Infineon TRICORE)
 - Model Validation (compare to measurement)



- Format to become IBIS standard under IBISMultilangue ?
- Model developement and exploitation
- Extraction of currents for EMC simulation

Semiconductor Vendor Activities

- Some semiconductor vendors already have committed to ICEM for some IC families (Atmel, Motorola/Freescale, Infineon, Philips)
- Depends on the user demand

Conclusion & Outlook

- ICEM is not at that status as expected by its initators!
- Only few models available
- Only limited tool/simulation support
- Conflicting with IMIC
- This situation may change by the increasing user demand (automotive)