Co-Optimization of SerDes Channels using AMI Modeling

Walter Katz Signal Integrity Software, Inc. IBIS Summit, San Francisco, CA June 5, 2014

Overview

- Co-Optimization background
- Why Co-Optimize?
- Co-Optimization Methods
- Optimization Examples
- Two proposals, two methods
- SiSoft proposal: IBIS AMI Tx, IBIS AMI Rx
- Optional Private Protocol
- Advantages of SiSoft Approach
- Next Steps

2

Co-Optimization Background

What is Co-Optimization

- An operation in which the Equalization characteristics of the TX and RX are simultaneously adjusted to identify the optimal setting that maximizes one or more characteristics of a channels performance
 - Characteristics include Eye height, Eye width, Power, BER, etc.
- How does Co-Optimization work in the hardware
 - Performed via communication protocol between the TX and RX via a "Back channel" connection
 - Current SerDes protocols that define a backchannel
 - 802.3kr
 - 802.3bj
 - PCIe Gen3

Why Co-Optimize?

- Emulate backchannel adaptation defined by current SerDes protocols (802.3kr, 802.3bj, PCIe Gen3)
- 2. Sequentially optimizing TX and RX SerDes settings does not maximize system margin:

"Simulating Large Systems with Thousands of Serial Links"

> SI Guys / Ericsson / SiSoft DesignCon 2012

Backchannel Adaptation

Multiple standards support it

- 802.3kr
- 802.3bj
- PCIeG3
- PCIeG4
- Simulation can model the adaptation process and predict how the hardware will converge
 - Co-optimize Tx and Rx settings based on simulation of hardware adaptation protocol
 - Simulated Tx and Rx settings can be compared to hardware results

Protocol-Agnostic Co-Optimization

- Simulation can also be used to explore different Tx – Rx combinations and optimize for different design criteria:
 - Maximum eye height at Rx
 - Maximum eye area at Rx
 - Minimal Tx output power
- Tx / Rx settings for these criteria may or may not correspond to settings resulting from the standard hardware backchannel adaptation algorithms

Tx Taps Optimized for Eye at Input to Rx

Time (ps)

Tx/Rx Co-Optimization Example

Time (os)

 This is an example of the performance gains possible with backchannel adaptation approaches

We Are Signal Integrity

6

Tx/Rx Co-Optimization: Power

 These types of performance gains require more than just emulating hardware adaptation protocols

We Are Signal Integrity

Co-Optimization Methods

- Time-Domain (GetWave) Training (Backchannel)
 - Targeted at emulating hardware adaptation protocol
 - Training may take millions of UI to converge
 - Assuming just 10⁶ UI, simulations will take ~ 1 minute
 - 5000 channels will take ~5000 minutes (~100 hours)
- Statistical (Init) Co-Optimization
 - Targeted at exploring options and optimizing based on different metrics
 - Simulation times are ~ 1 second
 - 5000 channels will take ~5000 seconds (~2 hours)
 - System Integrators can (and do) evaluate many engineering decisions such as
 - PCB materials
 - IC Vendor and buffer IP selection
 - Via manufacturing technology

Two Proposals

	SiSoft	Cadence
Primary Focus	Enable System- level exploration and optimization	Model hardware backchannel adaptation
Secondary Focus	Model hardware backchannel adaptation	Enable System- level exploration and optimization
Method	Protocol-agnostic parameters in .ami files	Protocol-specific .bci files

SiSoft Proposal: IBIS AMI - Tx

- Add Reserved Parameters to enable Tx to publish its tap configuration
 - Number of Pre-Cursor Taps
 - Number of Post-Cursor Taps
 - Tap Coefficient Ranges
 - Tap Resolution (Tap Indexes)
 - Peak to Peak Voltage
- Add to Tx DLL (Init and GetWave) the ability to accept tap configuration recommendations
 - Tap Coefficients
 - Tap Indexes
 - Tap Increments
 - Peak to Peak Voltage

SiSoft Proposal: IBIS AMI - Rx

- Add Reserved Parameters to enable Rx to discover the Tx published tap configuration
- Add to Rx DLL (Init and GetWave) the ability to adjust the TX tap configuration
- Add Reserved Parameters to control training and co-optimization.
 - Turn on and off training
 - Define training pattern stimulus pattern

Private Training Protocol

- Allow a new Reserved String Parameter to both Tx and Rx to allow message to be sent back and forth between Tx Init, Rx Init, Tx GetWave and Rx GetWave.
- This is a true Black Box protocol, that will work with any EDA tool that will support this message passing method.

Advantages of SiSoft Approach

- Existing Tx DLLs can be used for co-optimization through new Reserved Parameters
- Tx model can report optimized tap coefficients through standard means (AMI Parameters_Out)
- No.bci files or associated approval processes
- Enables EDA tools to co-optimize channels that do not support backchannel training
- Enable EDA tools to optimize beyond solutions found by hardware backchannel adaptation

Next Steps

- The IBIS-ATM working group meets each Tuesday from Noon – 1PM Pacific time.
- The group is currently deciding which proposal to use as the basis for its efforts
- Work Archives at
 - http://www.eda.org/ibis/macromodel_wip/archive-date.html

