Touchstone Topics

Bob Ross IBIS Summit Meeting Design Automation Conference Anaheim, California June 10, 2008

© 2008 Teraspeed Consulting Group LLC

Generalized Mixed Mode Extension

- Notation:
 - SE: Single-ended format as currently exists
 - MM: Mixed Mode with differential and common mode components
 - GMM: Generalized Mixed Mode both SE and MM, or SE only or MM only
- Only one set of data in a file
- Example adaped from power splitter or balun:
 - K. Jung + 7 other authors, "A New Characterization and Calibration Method for 3-dB-coupled On-Wafer Measurements, IEEE Trans on Microwave Theory and Techniques, Vol. 56, no. 5, pp. 1193-1200, May 2008

GMM Features

- Diagonal format syntax shorthand for indices
 - n versus n² sized description
 - Compatible with [Matrix Format] < Upper | Lower> data reduction if Sij = Sji
- Re-positioning of data by index references
- General reference impedance re-mapping

 May lose standard vector relationships
- Data for GMM follows all the SE data formatting rules
- Tabular example illustrates some indexing issues and features with GMM

Diagonal Format Syntax (not final) and Data Mapping

CONSULTING

GROUP

Differential Ports Expressed with New Indices

Diagonal Information Sufficient and Fixes the Off-diagonal Terms

TERASPEED CONSULTING GROUP

Order of Data Selectable

GROUP

Default Reference Impedances

GROUP

Mapping of Arbitrary Reference Impedances Supported

Two MM Differential Lines

Two MM Differential Lines (Combining Mapping and Diff Indices?)

Observations

- N-port order has no relationship to physical order
- Matrix mapping and GMM indexing can be combined
- Bi-directional mapping to/from SE and GMM
- Default reference impedances conform to traditional definitions
 - Ri=Rj=R, Rd=2*R, Rc=R/2
 - Vi-Vj=Vd, li-lj=Vd
 - (Vi+Vj)/2=Vc, (Ii+Ij)/2=Vc

- Reference impedances
- Differential mode
- Common mode
- General reference impedances supported, but may complicate MM and GMM vector relationships
- May apply for Y, Z
- Still being developed

