

# Power Integrity for Single Ended Systems

Vishram S. Pandit, Myoung Joon Choi Intel Corp. IBIS Summit at DAC June 10, 2008

Acknowledgements:

Michael Mirmak, Julius Delino, Woong Hwan Ryu, Sanjiv Soman

Copyright © 2008, Intel Corporation. All rights reserved.

### Outline

- Objective: To demonstrate the Power Integrity (PI) methodology for Single ended systems with the emphasis on the buffer models.
- Single Ended systems
  - Driver Types
    - Open drain, Open source, Push-pull
  - Termination schemes for push-pull
    - Vss, Center-tap, Vcc termination
- PI only analysis:
  - Icc(t) generation and usage
- PI/SI analysis
  - PD noise impact on the jitter and voltage margin
- IBIS\* involvement





\*Other names and brands may be claimed as the property of others



PDN: Power Distribution Network







#### **Push-pull Driver, Vcc Termination**



\*Other names and brands may be claimed as the property of others

A

Ammeter

(intel)

#### **Push-pull: Other terminations**



## **Push-pull Driver**

- Four push-pull devices are used with SI/PD† model
- Currents are probed at the Vcc and Vss of the Driver node



#### Currents at P2 node (Vss)



- Current Profiles at the Driver power domains vary significantly based on the termination schemes at the Receiver
  - Need to consider realistic termination schemes and not just capacitive loading



\*Other names and brands may be claimed as the property of others

#### † PD: Power Delivery

### **PDN Currents at Driver**

| Receiver Term   | ⇒ Vcc Term      | Vss Term          | СТТ                   |
|-----------------|-----------------|-------------------|-----------------------|
| Driver currents |                 |                   |                       |
| Vcc Currents    | Crowbar current | DC Step + Crowbar | 1/2 DC step + Crowbar |
| Ινϲϲ            |                 | current           | current               |
| Vss Currents    | DC Step +       | Crowbar current   | 1/2 DC step + Crowbar |
| Ivss            | Crowbar current |                   | current               |

- Driver PDN currents are dependent on termination schemes at the Receiver
  - DC step due to termination scheme
  - IBIS\* application: Does BIRD 95 enable to include Ivcc and Ivss based on termination schemes?
- Crowbar currents for all configurations: Behavioral models need to include accurate Crowbar currents



## **Push-pull Driver**

- Four push-pull transistors are used with SI/PD model
- Currents are probed at the Vcc and Vss of the Receiver node
  Currents at P3 node (Vcc)
  Current at P4 node (Vss)



- Vcc (P3) currents: di/dt for Vcc Term is higher than that for CTT.
- System level model need to be considered with Driver and Receiver PDN



### **PDN currents at Receiver**

| Receiver Term     | → Vcc Term | Vss Term | СТТ       |
|-------------------|------------|----------|-----------|
| Receiver currents |            |          |           |
| Vcc Currents      | DC Step    | N/A      | ½ DC step |
| Vss Currents      | N/A        | DC Step  | ½ DC step |

- CTT produces smaller step than other two
  - Due to the resistor divider the DC step is half of that for the other cases
- Smaller the step, smaller is the di/dt.



# Icc(t) Generation

- Icc(t) is Ivcc and Ivss at the Driver PD node w.r.t. time
  - It provides a means to estimate the noise on the PDN as a function of SSO
    - Advantages: It gives first pass noise information
    - Disadvantages: It cannot model the buffer/ PDN dynamic interaction.
- Icc(t) for a single Driver is expanded to the interface
  - It can be scaled by total number of Drivers switching at the same time.
- Then, generate a PDN network and test different patterns, as PDN has some resonance.
  - Maximum data rate
  - Data rate at PDN resonance frequency
  - Interconnect resonance frequency



# Icc(t) Usage Models



- For calculating the PDN noise
  - Different currents in Vcc and Vss need to be accounted for.
  - Need two out of three currents for modeling: Ivcc, Ivss and Ipad
  - IBIS\* application: BIRD 95 can include these currents
- Transmission lines
  - For PDN-noise only analysis, Use individual transmission lines OR use a scaled model of multiple transmission line. Terminate the line/ lines at the far end



### **Example: Noise Profiles**

#### Noise at the Driver and Receiver End for two termination schemes



- Driver side noise is very similar for CTT and Vcc terminations
- Receiver side noise is different based on the termination schemes.



# **PDN Noise impact on timing**

- SI-PI comprehensive deck is generated
- 10 Buffers switching simultaneously 1010
- Cycle to cycle DQ-DQS jitter is measured.



SI only





• Inclusion of Icc(t) from different no. of buffers on power node, produces the jitter in SI-PI simulations.



# **PDN Optimization**

- System Level PI-SI models are generated
- Icc(t) is created for 66 buffers
- Two cases are studied: 1333MTPS, 267MTPS

#### EYE margin vs. Cdie



— 267MTPS

– 1333 MTPS

- EYE diagram includes effects due to ISI, crosstalk and SSO
- Cdie/ IO is varied and EYE margin is plotted.
- Higher the Cdie, lower is the SSO noise, hence higher is the EYE margin



#### Conclusions

- Power Integrity for the single ended systems
  - SSO Noise on the PDN
    - Icc(t) computation comprise of
      - Termination schemes, Driver type, Data Pattern
  - Jitter due to PDN
    - Driver side PD to signal coupling (primary source)
    - Channel PD to signal coupling
  - EYE margin impact due to PDN
    - Cdie optimization
- Behavioral Buffer Model needs to have
  - Ivcc, Ivss, Ipad
  - Dependency on the termination schemes
  - Ability to have noisy voltage source
- Can IBIS\* BIRD95/98 address all that?

