Next Generation I/O Macromodeling

Ambrish Varma, Ting Zhu, Paul Franzon

<u>paulf@ncsu.edu</u>

Ph. 919.515.7351

Towards the Next Generation

- Proposal at National Science Foundation asking for support into investigation of new approaches to IBIS modeling and (some) support of infrastructure
 - Requesting support for one PhD student for three years
 - Industry involvement proposed (guidance and feedback)
 - NSF success rate < 10%</p>
 - ~October start date if supported
 - Thanks for letters, though more would have been useful
 - Will modify and submit again next year if unsuccesfull

Elements of Proposal

Background

- Use of IBIS will diminish without influx of new technology
- Accuracy and availability issues forcing designers back to encrypted Spice models

Proposed Activities

- Develop templates for macromodels that improve accuracy and utility
 - Initially in Verilog -AMS and/or VHDL AMS
 - Later determine approach to implementation of a "B-model" like element in a Spice-like simulator
- Distribute templates and knowledge about "B-model" like element implementation
- Develop tools to support automated or semi-automatic conversion

Accuracy Issues

Black Box Correction Factors

– Inspired by BIRD95 and BIRD97

Implementation Issues

Verilog – AMS and VHDL – AMS

Preliminary results of two-tap pre-emphasis driver implemented in AMS

- KCL enforcement does not work for small currents.
 Instead match voltage and currents.
- Quasi-Newton iteration to improve convergence

Concluding Remarks

Questionaire