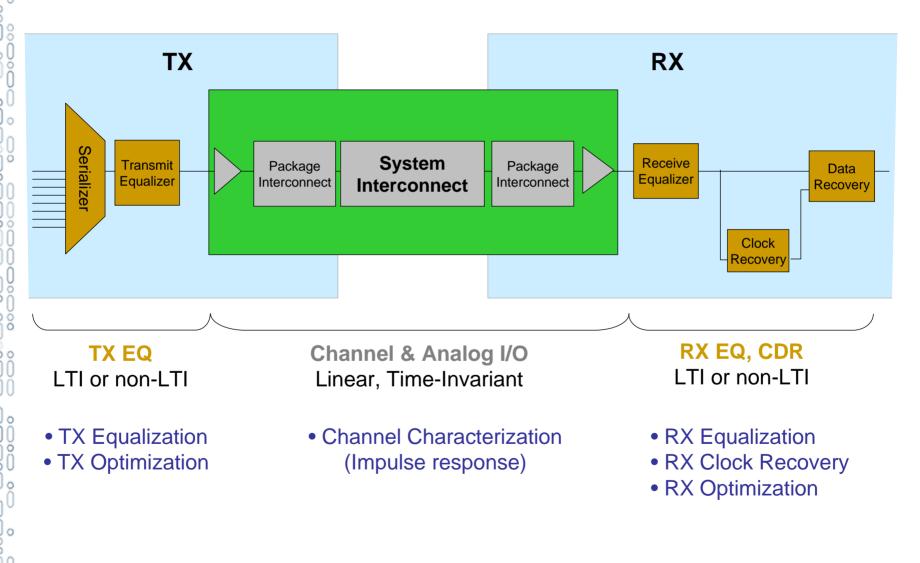
IBIS-ATM Update: SerDes Modeling and IBIS

Presented by: Todd Westerhoff, SiSoft

DAC IBIS Summit June 5, 2007

Who Needs SerDes Models?

- System Designers
 - Predict end-end link BER
 - Evaluate system-level design tradeoffs
- ASIC designers
 - Evaluate different TX/RX behavior
- SerDes circuit designers
 - Validate with standard test setups
- Test Equipment Vendors
 - Model device-specific equalization & clock recovery


Serial Link Analysis Needs

- Analyze link behavior $> 10^7$ bits
- Model transmit / receive equalization
- Model clock recovery behavior
- Serial link analysis is best addressed through a combination of analytical methods
 - 1. Characterization of the analog channel
 - 2. Equalization & clock recovery modeling

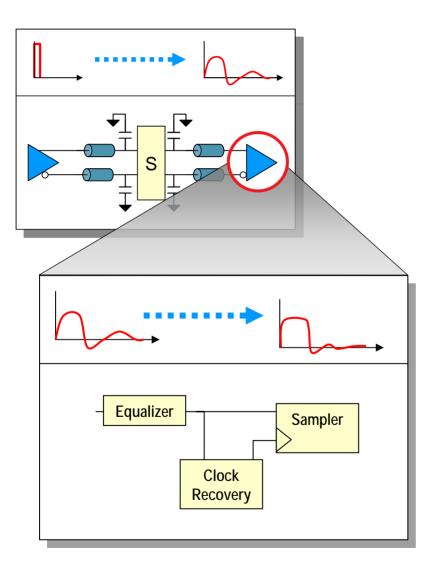
Why Use Separate Steps?

- Exploit linear behavior of serial channel analog components for computational efficiency
- Leverage existing techniques for modeling equalization and clock recovery
 - Communication systems theory
- Enable multiple analytical approaches
 - Commercial EDA tools
 - Matlab / StatEye
 - IP vendor tools

Serial Link Analysis

Serial Link Modeling Assumptions

- Analog channel can be considered LTI
 - Does not apply to fiber optics
- Equalization cannot always be considered LTI
 - e.g. DFE involves quantization of received signal
 - Time-varying (adaptive) behavior
- On-die noise and associated jitter is important, but measurement / modeling is not well defined
 - This will evolve as techniques improve
- IP vendors want to supply models that correspond to silicon as closely as possible


IBIS-ATM Effort

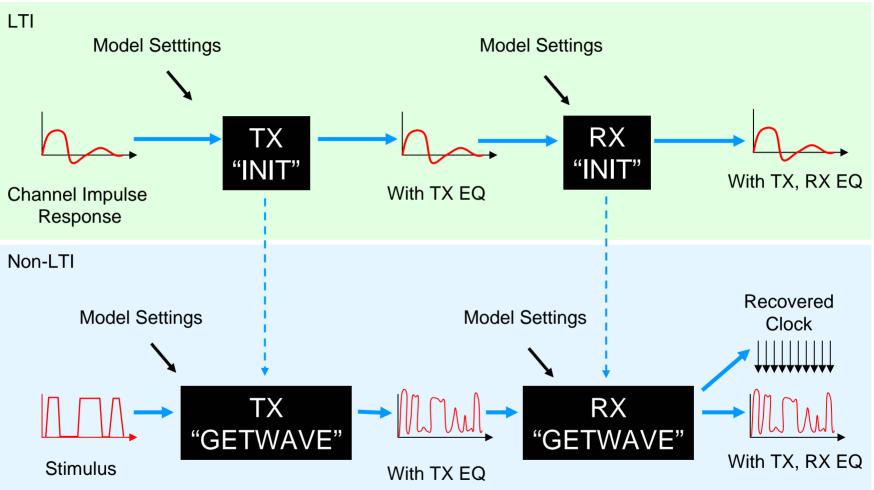
- Goal: SerDes Rx/TX model interoperability
 - Multiple EDA environments
 - Multiple SerDes vendor models
 - Protect SerDes vendor IP
- IBIS-ATM committee participation
 - EDA: SiSoft, Cadence, Mentor, Agilent
 - Semiconductor: IBM, TI, Intel, Micron, Xilinx, ST-Micro
 - System: Cisco
- Two part modeling standard
 - Electrical model: TX / RX analog characteristics
 - Algorithmic model: equalization, clock recovery, device optimization algorithms

IBIS-ATM Activities Since DesignCon

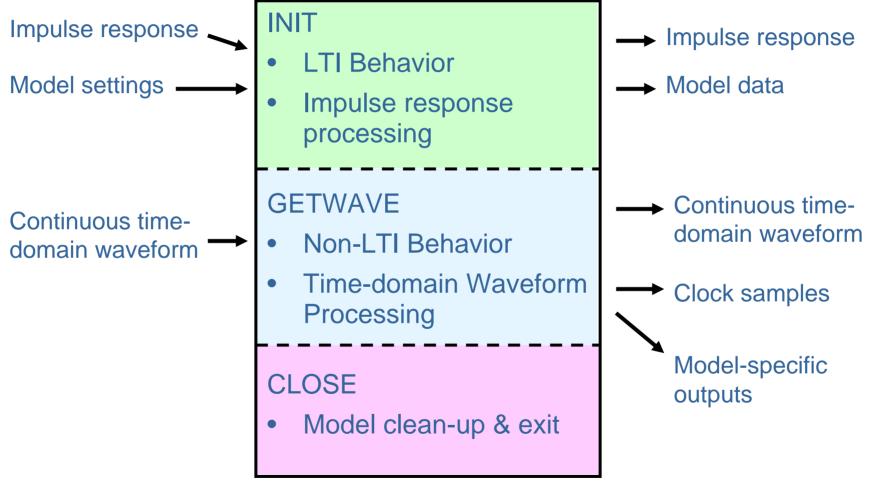
- Weekly IBIS-ATM calls
- EDA vendor meetings
 - Cadence/SiSoft/Mentor meeting in Chelmsford, MA
 - Weekly conference calls
- Regular meetings with IP vendors
 - Weekly conference calls
- Developed & refined draft BIRD

Required SerDes Device Models

Characterization (analog)
Existing IBIS 4.2 syntax


Communications models

- LTI
 - Equalization
 - RX clock PDF
- Non-LTI
 - Nonlinear equalization
 - Adaptive equalization
 - Clock recovery behavior


IBIS-ATM Algorithmic Models

- Models provided as executable [binary] code
 - Fast, efficient execution
 - Protects vendor IP
 - Extensible modeling capability
 - Allows models to be developed in multiple languages
- Standardized execution interface
 - Module loading mechanism & call signature
 - Data input/output formats
- Standardized model parameter interface
 - "Reserved parameters" interpreted by EDA platforms
 - Model-specific parameters can be exposed to and set by end-users

IBIS-ATM Algorithmic Models

Executable Model Architecture

Executable (DLL) Call Arguments

- Init (impulse response processing)
 - Bit time
 - Number of waveform samples per bit
 - Number of crosstalk aggressors
 - Channel impulse response(s)
 - Model parameters and values
 - Pointers to free memory, data return area
- Getwave (waveform processing)
 - Input waveform(s)
 - Pointers to data return area
 - Equalized waveform
 - Clock times
 - Optimized parameters

Model Parameters

- Additional data passed between executable model & simulator
- Model-specific parameters
 - Allow IP vendors to define data required for / provided by a specific model
 - Defined parameter declaration and usage format
 - Allows end-users to set and display model-specific data
- Reserved parameters
 - Predefined parameter list used by EDA tools to alter analysis flow
 - Allows models to tell EDA platform what data the model does/doesn't provide

Current IBIS-ATM Status

- Original proposal submitted by Cadence in 2006
- Current proposal authored by Cadence, SiSoft, Mentor
- Technical issues settled between EDA vendors
- Proposed solution reviewed with IP vendors
- Detailed documentation in development
- Plan to distribute sample models and "wrapper code" to aid model developers

Next Steps

- 1. Preliminary approval by IBIS-ATM subcommittee
- 2. Complete BIRD documentation
 - Target: June 2007
- 3. Develop sample models & prototype EDA integration; resolve detailed issues with spec
 - Target: September 2007
- 4. Bring to IBIS-ATM committee for final approval
- 5. Bring to IBIS committee for approval

* Note: Steps 3 and 4 in parallel