
page 1
*Other brands and names are the property of their respective owners

IBIS Summit, DAC 2007

June 5, 2007

Arpad Muranyi
Signal Integrity Engineering

Intel Corporation
arpad.muranyi@intel.com

The *-AMS experience

page 2
*Other brands and names are the property of their respective owners

Outline

• IBIS / *-AMS background
• Problems
• Current situation
• Strengths and weaknesses of

*-AMS and other languages
• Looking for solutions
• Need to make a decision

page 3
*Other brands and names are the property of their respective owners

Background

• The VHDL-AMS and Verilog-AMS language
extensions were first introduced in the IBIS v4.1
specification on January 30, 2004

• The expectation was that they will solve the biggest
problem in IBIS: RIGIDITY due to assumed
algorithms on how the data is interpreted or used
by the simulation tools.

• Reminder: IBIS files contain data only, algorithms
are defined and implemented by the tool vendors.

• New types of behaviors required new keywords
and changes to the specification, a lengthy process.

page 4
*Other brands and names are the property of their respective owners

There was hope

• The VHDL-AMS and Verilog-AMS language
extensions were expected to provide the means for
a model maker to write their own algorithms.

• This should have eliminated the need for any new
keywords since the *-AMS models can describe the
device behavior as well as the data that is needed
for it (optionally reading the data from external
files, including IBIS files).

IBIS + AMS = data + algorithm

page 5
*Other brands and names are the property of their respective owners

Problems

• Implementing the *-AMS languages in simulator
tools is not easy ($$$).

• Small companies would have to start from scratch.

• Large companies usually do not offer the *-AMS
languages in their lower cost SI tools.

– the more expensive IC design tools usually have it
– depends on business model and product line

• The languages are unfamiliar to most SI engineers.

• New IBIS keywords (in the old style) are still being
requested.

– these are mostly for analog features, not SERDES
related algorithmic modeling features

page 6
*Other brands and names are the property of their respective owners

More problems

• There is an ongoing push for filling the gaps of
Berkeley-SPICE in IBIS.

• This is essentially calling for a standardized SPICE
under the IBIS umbrella.

• The attempt to fill this need with the *-AMS Macro
Model Library didn’t seem to succeed.

• The Macro Model Library may be useful for
Pre/De-emphasis buffers, but it is insufficient for SI
work with high speed SERDES buffers and/or
algorithmic modeling.

• SERDES experts believe that the *-AMS languages
are insufficient for SERDES buffers and algorithmic
modeling.

page 7
*Other brands and names are the property of their respective owners

Current state of affairs

• *-AMS is not gaining too much momentum in the SI world.

• Most SERDES modeling experts use other languages (C,
Matlab* by The MathWorks, Inc., etc…).

• Participants of the IBIS-ATM group are working on a
non-AMS API proposal (BIRD) for IBIS to address the
SERDES modeling needs.

• HDL languages are inadequate to describe hardware (?!?)
– traditionally these languages were used on transistor level
– IBIS seems to want to apply it to system or PCB level work

• General Purpose languages do not have built in hardware
concepts for model/algorithm writers.

– nodes, terminals
– branch currents, voltages, etc…

page 8
*Other brands and names are the property of their respective owners

The Matlab* story
• Matlab* is extremely popular among a vide variety of

disciplines: electronics, physics, chemistry, geology,
biology, finance, stock market, you name it…

• Why? Intuitive language, doesn’t bog down the user with
unnecessary computer science requirements and hurdles.

• How is this done? They have a vast amount of toolboxes
on top of a C-like language.

• The missing piece: Despite Simulink*, Matlab* has no
direct SI and PCB-level simulation capabilities.

• The same is true for C, it didn’t become popular until the
various libraries came along (MFC, .NET, etc…), but
these libraries are still not as easy to use as the Matlab*

toolboxes, and you need to write your own simulator...

page 9
*Other brands and names are the property of their respective owners

Technology supposed to make our life easier

• Keep in mind, most engineers and scientists enjoying Matlab*

are not computer scientists!

• In other words, they do not want to have to worry about
constructors, destructors, memory allocations, inheritance,
declarations, marshaling, type casting, etc..., they want to
solve their own engineering problems, which is hard enough
in itself.

• Computers, programming languages, (and simulation tools)
supposed to help to make our jobs easier, not harder.

• Example: Verilog-AMS does not have an “sgn” function.
Yes, it is easy to write an IF/ELSE statement to return a +1, 0, or a -1,
but why put this burden on the user of the language? His/her mind was
geared to solve a problem that needed “sgn” and not to figure out how to
code the “sgn” function…

page 10
*Other brands and names are the property of their respective owners

Looking for solutions

• Using the Matlab* philosophy, we could develop easy
to use “toolboxes”, function libraries built on the basic
capabilities of the *-AMS languages.

• Are the *-AMS languages powerful enough to address
all the system level hardware modeling needs?

• If not, can the API-s of the *-AMS languages be
utilized to shoehorn user written functions into the
languages?

• Do we need to approach the language workgroups to
request the necessary improvements?
(Are they going to be responsive, interested)?

• Or should we pick (an)other language(s) for modeling?
If so, which one would work the best?

page 11
*Other brands and names are the property of their respective owners

GP programming languages and modeling

• General purpose programming languages do not
come with built in concepts of electronics.

– no wires, nets, nodes, terminals, branches
– no node voltages, branch currents
– no relationships between charge, current, voltage, etc…

(These are the strength of the *-AMS languages)

• These concepts could be established in a special
“electronics library” written for simulation and
modeling purposes.

• If such a library doesn’t exist, should someone create
one for the EDA industry?

• If so, this should preferably be a standardized library
that works across all simulators.

page 12
*Other brands and names are the property of their respective owners

Decision to make

• Simulation tools have a good tie with *-AMS, but the
*-AMS languages and/or model development
environments are lacking.

– EDA vendors could offer independent model development
environments as separate products from the simulators

– lower cost simulators could use (pre compiled) models
developed under different model development tools

• The C, Matlab*, etc… languages are much more
sophisticated, have excellent development
environments, but have poor ties with hardware
simulation environments.

• We must either improve the *-AMS picture, or import
the C, Matlab*, etc… capabilities into the simulation
tools (with user friendly hardware description
extensions).

