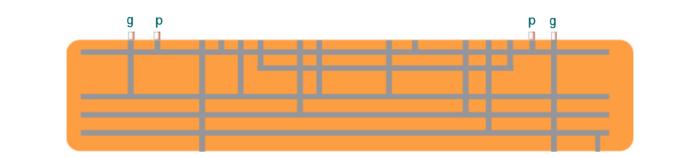


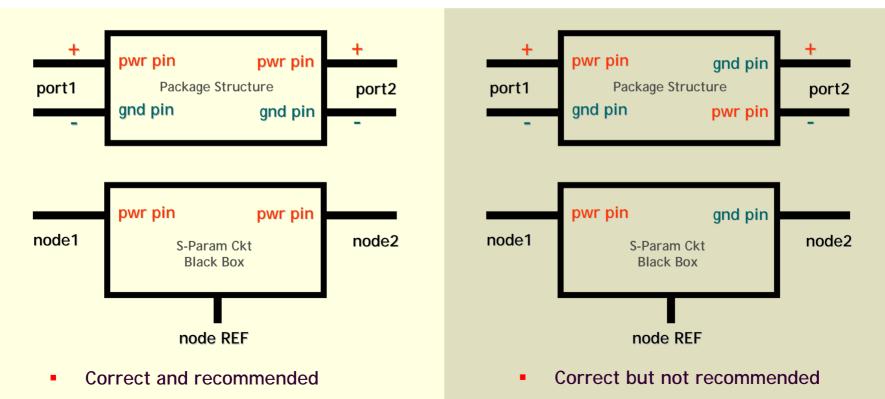
Issues with Interfacing "2N" and "N+ref" Behavioral Models

Sam Chitwood Sigrity, Inc.

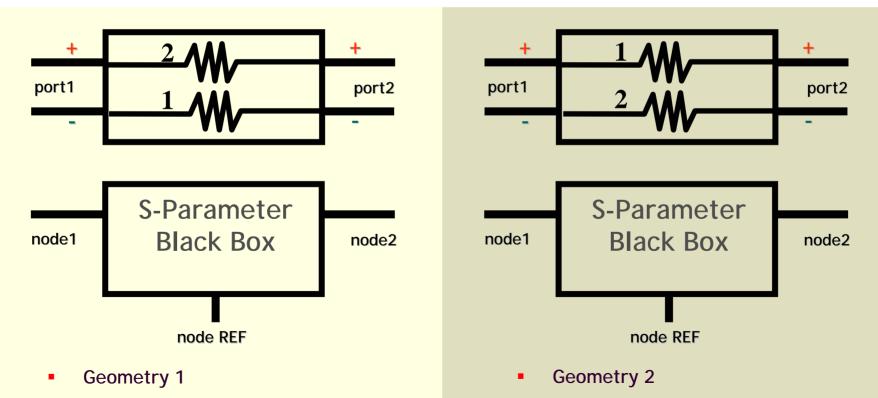
DAC IBIS Summit June 5, 2007

Outline

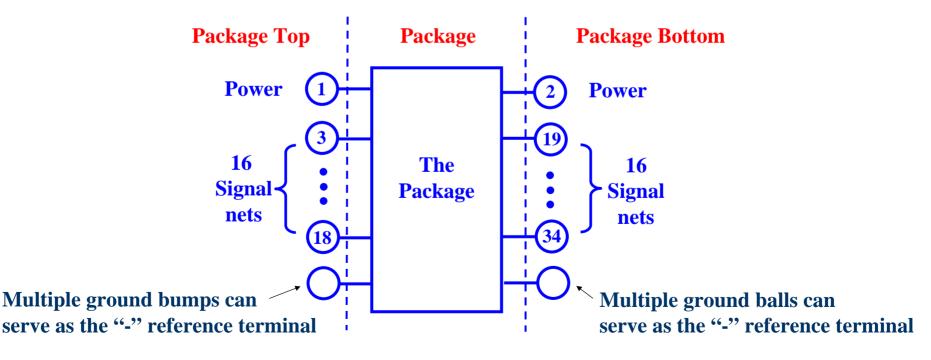

- Review of typical S-parameter connections and "N+ref" implementation in SPICE
- Comparison of "2N" and "N+ref" modeling techniques
- "2N" Connection Techniques in Simulation
- Comparison of the Resulting Models
- Summary and Conclusions



S-parameters and the REF Node: Port Connections and SPICE Usage


Typical PDS Port Connections

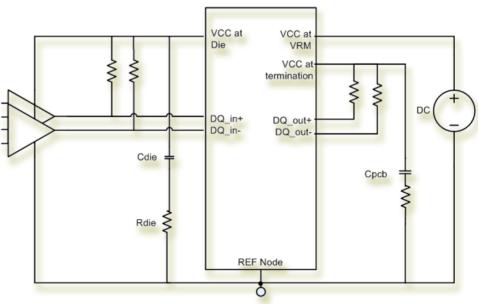
S-parameters are a "loop" concept


- For the two geometries below, the resulting S-parameters are identical.
- Properties of individual nets *cannot* be derived from S-parameters.
- This is one of the reasons why explicit negative terminals are not provided by many simulation tools. (REF is a very useful technique – more details later).

SIGRITY

Typical Port Connection Guidelines

- Use the same net (ex. VSS) as the "-" reference terminals for all ports.
- Mixed referencing (using different nets for "-" port terminals) is allowed, but not recommended. (NOT allowed if you hookup circuits across the ports.)
- These guidelines are intended for external circuits with 1 PWR & 1 GND.



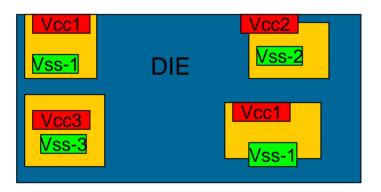
Questions on the Single Reference Node (REF) in Many SPICE Implementations

- The physical structure has N ports. Each port has one "+" terminal and one "-" local reference terminal, resulting in a total of 2N physical terminals.
- The SPICE circuit model has N+1 nodes. The N nodes correspond to the N physical "+" terminals, whereas the +1 node is a virtual reference node commonly named "REF".
- The "REF" node is not a physical ground node, nor a power node. Rather, the circuit is created such that the response or behavior at each + node with respect to the REF node models the response or behavior of each of the original "+" port nodes with respect to their individual "-" port nodes. REF is a *mathematical construct*.

Circuit Connection Guidelines

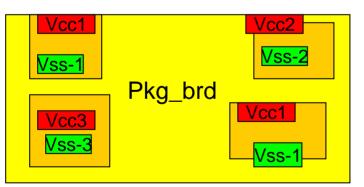
- When using the REF node with a specific "+" terminal, think of the REF node as that port's corresponding "-" terminal.
- If you do not already have node 0 in your circuit, you should connect REF to node 0 since SPICE requires as least one node 0. This also makes voltage measurement easy!
- If you unfortunately already have node 0 somewhere in the driver or receiver circuits, do
 not make the additional connection of REF to node 0. Measure voltage as V(n)-V(ref).
- If the Driver and Receiver models both contain global node names for their negative terminals (ex: ground, gnd, 0), the REF technique accurately models the PDS because those negative terminals are meant to be connected in this technique.
- If the models are encrypted, unfortunately the user does not know if global names are used or not... REF must be used.

"2N" Behavioral Models


- Some extraction tools may provide "2N" behavioral models (note the 2 ohm resistor). They intend to reproduce the distributed response between all physical terminals.
- These models have unique terminals for multiple power and ground pins.
- Unfortunately, these models cannot be interfaced with (or connected to) typical S-parameters due to the REF technique in many SPICE tools.
- Warning: Global node "0" is used in this model. If node "0" exists elsewhere in the SPICE deck, incorrect results are likely.

.subckt PowerN	Iodel n1 n2 n3 n4 n5 n6 n7 n8
Vd1 n1	n1_p 0
Rp1 n1_j	o n8 2.000000
Gd1_1 n8	n1_p n1 n8 -3.7036112142644201e-01
Fd1_1 n8	n1_p Vd1 -7.4072224285288413e-01
Gd1_2 n8	n1_p n2 n8 1.8288902037848827e-02
Fd1_2 n8	n1_p Vd2 3.6577804075697662e-02
•••	-
Vd2 n2	n2_p 0
Rp2 n2_j	n8 2.000000
Gd2_1 n8	n2_p n1 n8 1.0051775904867706e-01
Fd2_1 n8	n2_p Vd1 2.0103551809735415e-01
Gd2_2 n8	n2_p n2 n8 -4.4313952195018808e-01
Fd2_2 n8	n2_p Vd2 -8.8627904390037626e-01
Gd2_3 n8	n2_p n3 n8 4.5860899569942673e-02
•••	
Rlarge_n1 nn1	0 1.0e6
Cn1 nn1	0 1.0
Gb1_1 0 n	n1 n1 n8 0.707107
Fb1_1 0 n	n1 Vd1 1.4142135623730951e+00
Ga1_1 0 n	n1 nn1 0 -2.8955106355430019e+08
••••	

9



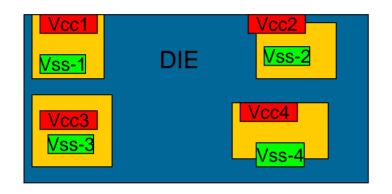
Typical S-parameter connectivity is not compatible with other "2N" models

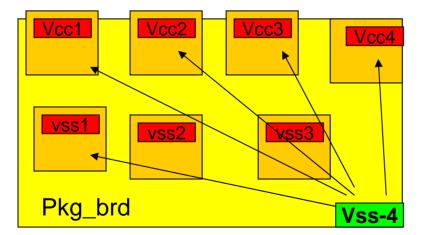
2N Die Model

.subcircuit vcc1 vss1 vcc2 vss2 vcc3 vss3 vcc4 vss4 die

N+ref Model (with conventional port connections) .subcircuit pwr1 pwr2 pwr3 pwr4 REF pkg_brd

There is a mapping problem!


The multiple "vss" nodes in the 2N model cannot be shorted together at the REF node.



S-parameter Connection Techniques to Generate 2N External Terminals

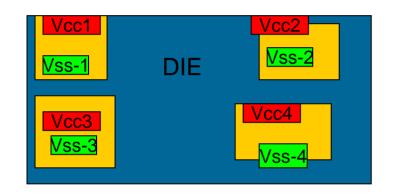
Alternative Port Connection Technique #1

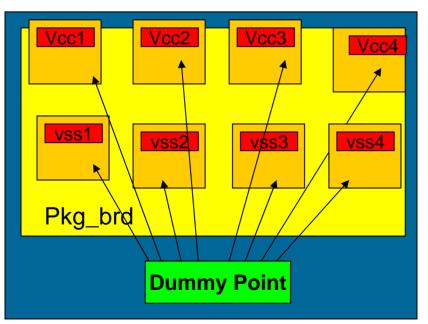
Instead of the conventional 4 port technique, select one vss bump and let it serve as the negative port terminal for all other ports.

Port1 vcc1-vss4	Port2 vcc2-vss4
Port3 vcc3-vss4	Port4 vcc4-vss4
Port5 vss1-vss4	Port6 vss2-vss4
Port7 vss3-vss4	

2N Die Model

.subcircuit vcc1 vss1 vcc2 vss2 vcc3 vss3 vcc4 vss4 die


S-parameters (with alternative port connection technique) .subcircuit pwr1 pwr2 pwr3 pwr4 gnd1 gnd2 gnd3 REF pkg_brd


Node Mapping

vcc1->pwr1, vcc2->pwr2, vcc3-> pwr3, vcc4->pwr4, vss1->gnd1, vss2->gnd2, vss3->gnd3, **vss4->REF**

Alternative Port Connection Technique #2

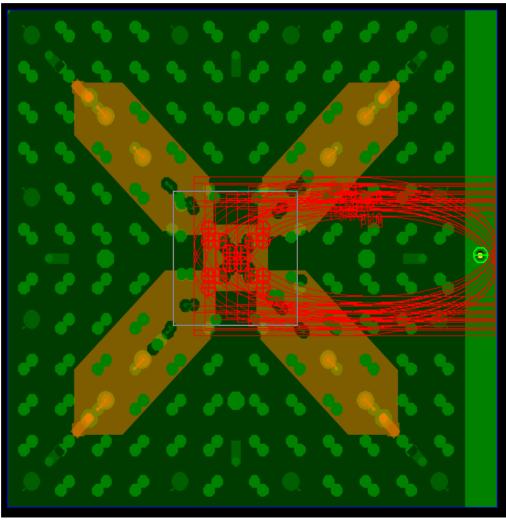
Instead of the conventional 4 port technique, some tools allow a "dummy reference point". It serves as the negative port terminal for all other ports.

Port1 vcc1 – d.p.	Port2 vcc2 – d.p.
Port3 vcc3 – d.p.	Port4 vcc4 – d.p.
Port5 vss1 – d.p.	Port6 vss2 – d.p.
Port7 vss3 – d.p.	Port8 vss4 – d.p.

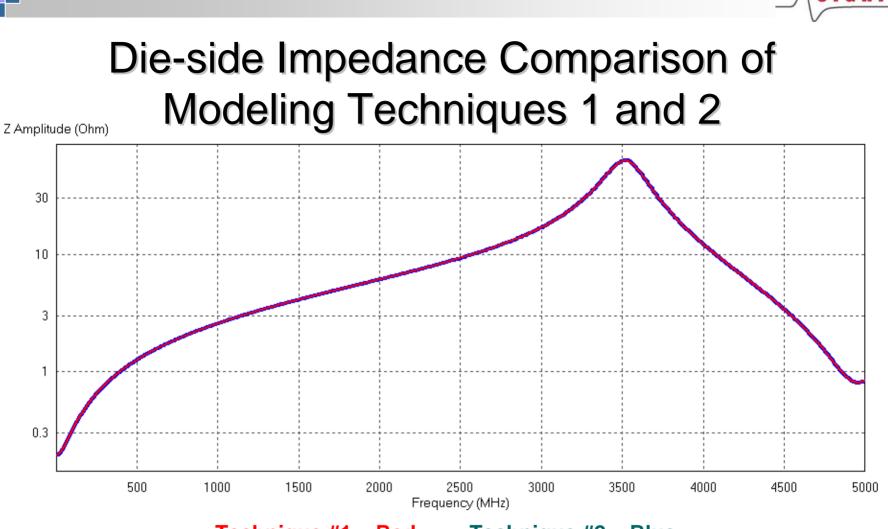
2N Die Model

.subcircuit vcc1 vss1 vcc2 vss2 vcc3 vss3 vcc4 vss4 die

S-parameters (with alternative port connection technique) .subcircuit pwr1 pwr2 pwr3 pwr4 gnd1 gnd2 gnd3 gnd4 REF pkg_brd

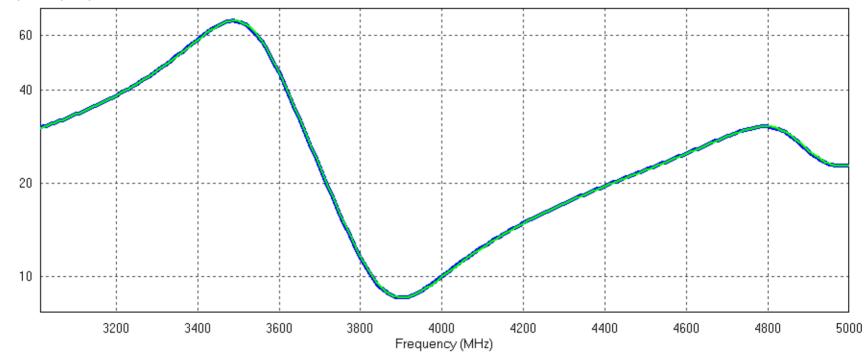

Node Mapping

vcc1->pwr1, vcc2->pwr2, vcc3-> pwr3, vcc4->pwr4, vss1->gnd1, vss2->gnd2, vss3->gnd3, vss4->gnd4


REF is not connected to the 2N Die model (it floats) structions

Graphical Representation of Alternative Technique #2

Sigrity Inc. Proprietary – Use Pursuant to Company Instructions

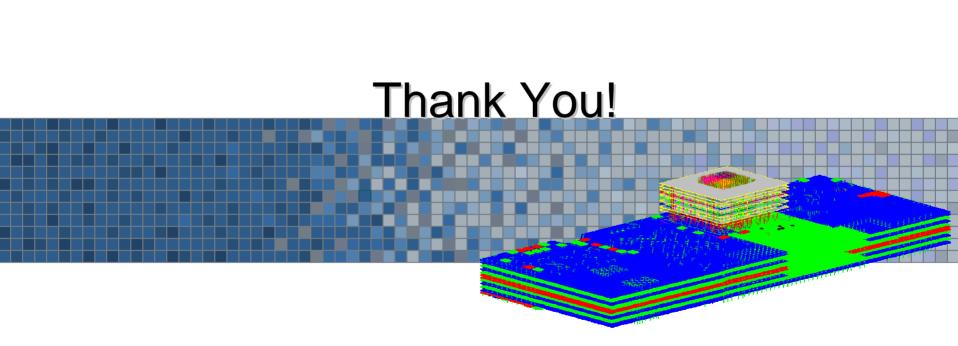


Technique #1 – Red Technique #2 – Blue

- The "loop inductance" test is the impedance at the die with all BGA balls shorted.
- The same results can be achieved with either connection technique.

Comparison of Results for Z(vcc1, vss1)

Z Amplitude (Ohm)


Technique #1 – Green Technique #2 – Blue

- Z(vcc1, vss1) is the impedance at the top-left of the die. All BGA balls were shorted.
- Again, the same results can be achieved with either technique.

Summary and Conclusions

- Typical "N+ref" S-parameters do not provide unique reference terminals in SPICE. This is *extremely useful* due to encrypted models and global "gnd" node names.
- The choice between "2N" and "N+ref" modeling techniques should be determined by the connectivity of the intended external circuits
- If distributed reference terminals are desired, two connection techniques were presented that yield S-parameters with explicit connections at all pins
- The "2N" simulation methodologies were shown to produce correlated results

SIGRITY