


ICM Refresher

- ICM = IBIS Interconnect Modeling Specification
- Purpose: to establish a human-readable standard format for exchanging interconnect modeling data
 - "Interconnect" can be connector, cable, PCB traces or even an IC package
- ICM uses a two-part format:
 - Description of model in terms of one or more sections with terminals mapped to named pin/node lists
 - Nodal arrangement with explicit interconnections
 - Tree arrangement with implicit interconnections
 - Electrical data describing each section
 - RLGC matrix data
 - S-parameter data (external Touchstone® file)

06/11/03

-< Port2</pre>

∠ Port3

A Partial Example

intal

Tree Description [Begin ICM Model] MyModelExample7 [Begin ICM Model] MyModelExample7 [Begin ICM Model] MyModelExample
ICM model_type SLM_quiescent
[Tree Path Description]
Model_pinmap = MyModelPinMapA
Section Mult=1 SectionB
Section Mult=1 SectionC
Section Mult=1 SectionD
Fork Section Mult=1 SectionF Model_pinmap MyModelPinMapB Endfork Section Mult=1 SectionE

[End ICM Model]

Port1 >-

06/11/03 *Other brands and names are the property of their respective owners

Model_pinmap MyModelPinMapC

Pins

Nodal Description

SectionF

ICM_model_type MLM [Nodal Path Description] Model_nodemap Port1

N_section (A1 A2 A3 A4 A5 11 12 13 14 15) Len=1.0 A N_section (11 12 13 14 15 21 22 23 24 25) Len=1.0 B N_section (21 22 23 24 25 31 32 33 34 35) Len=1.0 C N_section (31 32 33 34 35 s1 s2 s3 s4 s5) Len=1.0 D N_section (s1 s2 s3 s4 s5 F1 F2 F3 F4 F5) Len=1.0 F

Model_nodemap Port3 N_section (s1 s2 s3 s4 s5 E1 E2 E3 E4 E5) Len=1.0 E Model_nodemap Port2 [End ICM Model]

A more formal example is available at the end of this presentation...

Page 4

Desktop Platforms GROUP

ICM History

- Initial concept developed 1995 1997
 - IBIS Connector/Futures Subcommittee
- Sporadic revisions 1999 2002
- Internal Draft 1.0 released Sept. 19, 2002
- Committee Internal Drafts 1.0a 1.0g
- Final Draft 1.0 released publicly May 16, 2003
 - See IBIS web site under "Connector Info"

Jb/11/03 Other brands and names are the property of their respective owners Page 5

SŢ

What Changed in Final Draft 1.0

- Over 63 issues formally logged since Sept. 2002
 - More than two dozen additional small issues resolved.
- Most changes were editorial
 - Spelling, punctuation and grammar
 - Standardization to improve software parsing
 - Name changes for consistency with IBIS 4.0
- Some technical limitations established
 - RLGC and S-parameter sections not permitted within the same model (allowed in the same file)
 - S-parameter data only to be used with [Nodal Path Description] keyword
 - Implicit use of single-ended ports for S-parameter data

More details under "Long-Term Issues"

names are the property of their respective owners

Page 6

Short-Term Future

- ICM now in IBIS Open Forum Review
 - Officially introduced at May 30 meeting
 - Minimum of three Open Forum meetings must consider the document before an official vote
 - Parser in development tentatively available for initial testing after Open Forum approval
- Interested parties strongly encouraged to provide feedback and test models
 - Feel free to provide or construct ICM models using "favorite interconnects" for testing
 - Example: package which is inconvenient or impossible to describe using IBIS .PKG

106/11/03
*Other brands and names are the property of their respective owners

Page 7

Desktop Platforms

Future Improvements

- After 1.0 is approved by the Open Forum, several technical issues may be considered for future revisions
 - Allow multiple types of data within a single [Begin ICM Model]/[End ICM Model] pair
 - Example: Include S-parameter AND RLGC data
 - Include frequency-dependence in RLGC data
 - Example: Matrix parameters for 1 MHz, 100 MHz, etc.
- A formal "BIRD-like" procedure will be established to document and process change proposals

/11/03

Page 8

Long Term Issues

- Using ICM with IBIS models
 - No explicit links to IBIS in ICM or vice-versa
 - Implied that data files are linked through tools
 - IBIS or ICM BIRDs for cross-referencing?
- Touchstone[®] and mixed-mode S-parameters
 - ICM maps section nodes to ports
 - Ports are implied to be single-ended
 - Touchstone® format establishes regular data format
 - Comments, options, frequency and S, Y, Z, H, G data
 - Interpretation of data assumes single-ended (S12, etc.)
 - Mixed-mode (SDD12, SCD22, etc.)?
 - Some authors release mixed-mode Touchstone® files
 - Data format is standard, but interpretation is not
 - New Touchstone needed for mixed-/multi-mode?

0/11/03
Other brands and names are the property of their respective owners

Page 9

Long Term Issues

- ICM cookbook needed!
 - Need to provide guidance to model builders
 - Take approach from 1997 IBIS 2.1 Cookbook
- Cookbook topics
 - Summary of keywords
 - Explanation of key concepts
 - Ground references
 - Return paths
 - Summary of best known modeling methods
 - Measurement vs. simulation
 - Several complete examples

/11/03

Page 10

Summary

- ICM is an evolution of IBIS package and PCB modeling formats
- Official 1.0 pending Open Forum approval
 - Please review the ICM Final Draft
 - Comments and test models are appreciated!
 - Comments and test moders are appreciated:
- Thanks to the Connector Subcommittee

John Angulo Kelly Green Lynne Green Arpad Muranyi Augusto Panella Stephen Peters

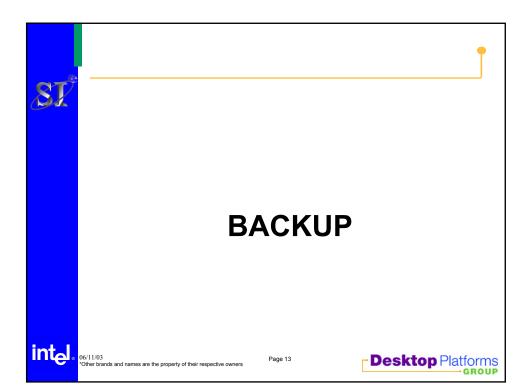
Bob Ross

and to the many other individuals and groups who contributed!

5/11/03
Wher brands and names are the property of their respective owners.

Page 11

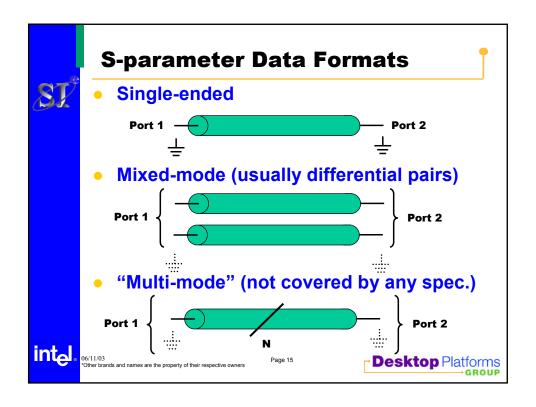
Desktop Platforms

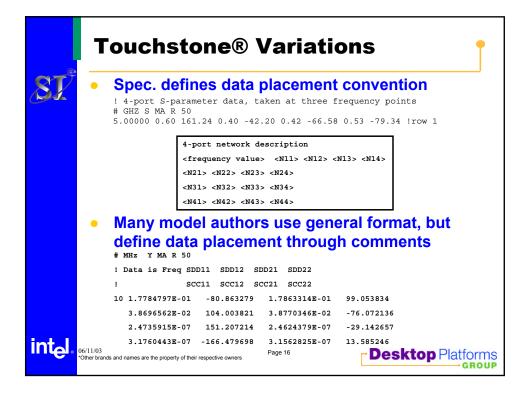


Questions and Free Discussion

/11/03

Page 12


S-parameter Data Formats



- Single-ended
 - Data defined per node + reference: S12, S21
- Mixed-mode (usually differential pairs)
 - Common & Differential excitation and response
 - Data defined per node pair: SDD12, SDD21
 - Data defined per node pair + reference: SCC11
- "Multi-mode" (not covered by any spec.)
 - Excitation and response for n-node groups
 - Example: SD₁₂C₄₅₈

11/03 her brands and names are the property of their respective owners Page 14

ICM Example

[Begin Header]

[ICM Ver] 1.0

[File Name] iconm_hdi_202.icm

[File Rev] 1.0

[Date] May 29, 2003

[Source] Results from field simulation [Notes] This is a test model only.

[Disclaimer] This information is for modeling

purposes only, and is not guaranteed.

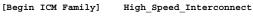
[Copyright] Copyright 2003, XYZ Corp.,

All Rights Reserved

[Support] http://www.VendorNameIbisModels.com

[Redistribution] Yes

[Redistribution Text] This file is freely redistributable.


[End Header]

Page 17

ICM Example (2)

[ICM Family Description]

High Density square pin connector for use on IEEE 99999 buses.

XYZ Incorporated

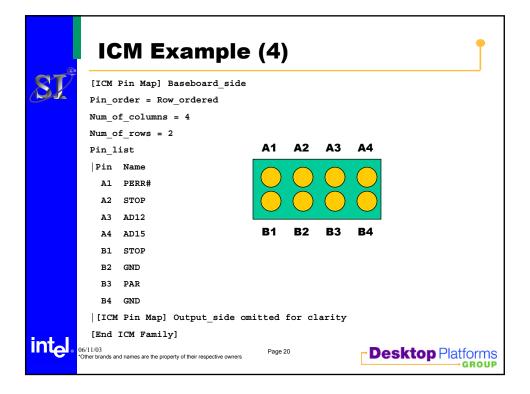
|-----

[ICM Model List]

[Manufacturer]

Mating Min_Slew_Time

My ModelExample3 Mated 100ps HDI_202_Mated.jpg |HDI_202_UnMatedA Unmated_side_A 100ps HDI_202_UnMatedA.jpg |HDI_202_SMT_to_Cable 25ps HDI_TEST_202_Mated.jpg Mated HDI_202_SMT_to_ThruHole Mated 25ps HDI_202_Mated.jpg



Page 18


```
ICM Example (3)
[Begin ICM Model] MyModelExample3
                                     | Has a stub fork!
 ICM_Model_Type MLM
[Begin ICM Model Description]
High Density 0.1 center square pin with PCB effects
[Tree Path Description]
 Model PinMap Baseboard side
 Section Mult=1 SectionA
   Section Mult=1 StubSection1
 End fork
 Section Mult=1 SectionB
 Model_PinMap Output_side
[End ICM Model]
                        SectionA SectionB
          Baseboard side >----- Output side
                                 StubSection1
                                              Desktop Platforms
```


ICM Example (5)


```
[Begin ICM Section] SectionA
[Derivation Method] Lumped
[Inductance Matrix] Full_matrix
[Row]
3.04859e-07
                 4.73185e-08
                                 1.3428e-08
                                                 6.12191e-09
1.74022e-07
                7.35469e-08
                                 2.73201e-08
                                                 1.33807e-08
[Row] 2
3.04859e-07
                 4.73185e-08
                                 1.3428e-08
                                                 7.35469e-08
1.74022e-07
                7.35469e-08
                                 2.73201e-08
```


06/11/03
*Other brands and names are the property of their respective owners

Page 21

ICM Example (6)

06/11/03
*Other brands and names are the property of their respective owners

Page 22