

Modeling on-die terminations in IBIS (without double counting)

IBIS Summit at DAC 2003 Marriott Hotel, Anaheim, CA June 5, 2003

Arpad Muranyi Signal Integrity Engineering Intel Corporation arpad.muranyi@intel.com

Outline

- Summary of advanced buffer features
- General guidelines for making models for buffers with advanced features
- Static parallel termination
 - Algorithms to avoid double counting
- Switched parallel termination

Advanced buffer modeling

• Pullup or pulldown "resistors"

- they prevent 3-stated buses from floating around the threshold voltages
- usually in the k range (I_{sat} in μ A range)
- usually implemented as a transistor turned on constantly

Integrated terminators

- static transmission line termination (low impedance)
- dynamic implementations designed to save power

• Bus hold circuits (may be dynamic)

- similar to pu/pd resistor idea, but usually has a lower impedance
- could be time, edge or level dependent if dynamic

• Dynamic clamping mechanisms

• strong clamps turn on momentarily to prevent excessive overshoot

• Staged buffers

- mostly used in slew rate controlled drivers
- Kicker circuits
 - transition boosters and then turn off
- Anything else you can invent goes here...

Modeling static advanced features

- Anything that is ON constantly should be modeled using the [Power Clamp] or [GND Clamp] I-V curves
 - pullup or pulldown "resistors"
 - static integrated terminators
 - static clamps, ESD circuits
 - static bus hold circuits
- Make sure you are using the appropriate rail for correct power and GND bounce simulation purposes
 - use [Power Clamp] for pullup resistor
 - [GND Clamp] for pulldown resistor, etc.
- Some additional post processing may be required to avoid double counting

Modeling dynamic advanced features

- Use IBIS version 3.2 features
 - keywords: [Driver Schedule], [Add Submodel], [Submodel], [Submodel Spec]
 - subparameters: Dynamic_clamp, Bus_hold
- Detailed knowledge of circuit behavior is required
- Familiarity with buffer's SPICE netlist required
- May have to dissect or modify SPICE netlist to generate necessary data in separate steps
- It may not be possible to make such models from simple and/or direct lab measurements

Block diaram of a CMOS IBIS model

- Power/GND clamp IV curves are always ON
 - Use these for everything that is static
 - Parasitic diodes
 - ESD circuits
 - On-die terminations, etc...
- Pullup/Pulldown IV curves are switched ON/OFF by the Ramps/Vt curves
 - Use these for everything that is switched or dynamic
 - Drivers, "kickers"
 - Dynamic clamps
 - Dynamic on-die terminations, etc...

On-die terminations

• Series termination

• does not require any special work because it is described by the shape of the I-V curve

• Parallel termination

• if the parallel termination is on all the time, use the method described for pullup/pulldown resistors

Switched parallel termination

- the parallel termination device is turned off while the opposite half of the buffer is driving
- make a normal complementary model for the driver portion of the buffer
- make a difference I-V curve for the terminator device and use the [Add Submodel] keyword in non-driving mode with the [Submodel] keyword's dynamic_clamp in static mode (without a pulse)

Pullup resistor example

I-V curves of a 3-stated buffer with pullup R

Zooming in on I-V curves

intel

intel

Algorithm in words

- Sweep device from - V_{cc} to $2*V_{cc}$ twice: GND and V_{cc} relative
- Cut clamp curve which will include the resistor at \mathbf{V}_{cc}
 - This can be automated by detecting which group of IV curves goes through the origin
- Cut other clamp curve at 0V
- Normalize (shift) the clamp curve which will not include the resistor to zero current at 0V
- Extrapolate both clamp curves horizontally to $2*V_{cc}$

Pullup and pulldown resistor example

- Looking into the output pad we see R_{thevenin}
- It is not possible to separate $R_{thevenin}$ into R_{pu} and R_{pd} from a single measurement at the pad
- The algorithm described on the following pages is only a crude approximation, but it may be better than leaving everything in one IV curve
 - Useful for POWER and GND bounce simulations

IV curves of pu and pd R example

I-V curves of a 3-stated buffer with both pu and pd R Platform Components

GROUP

Algorithm in pictures

intel®

Algorithm in words

- Sweep device from $-V_{cc}$ to $2*V_{cc}$ twice: GND and V_{cc} relative
- Cut clamp curves where they reach zero current going left to right
- Extrapolate all clamp curves horizontally to $2*V_{cc}$

Switched parallel termination example

• This buffer is a normal CMOS driver, but its pullup is ON in receive mode acting as a parallel terminator

	*
 [Add Submodel] Submodel name Mode	
ParTerm Non-Driving	
 ***********************************	*
[Submodel] ParTerm Submodel type Dynamic clamp	
	*
[POWER Clamp]	
VoltageI(typ)I(min)I(max)	
-1.79999995E+0 14.23263550E-3 17.10075140E-3 12.31312752E-3	3
 The I-V curve table of the [Pullup] is repeated here, because the terminator is actually the pullup left on in receive mode.	
3.59999990E+0 -44.34032738E-3 -44.32120919E-3 -48.62782359E-3	*

